Hoefel Udo, Hirsch Matthias, Kwak Sehyun, Pavone Andrea, Svensson Jakob, Stange Torsten, Hartfuß Hans-Jürgen, Schilling Jonathan, Weir Gavin, Oosterbeek Johan Willem, Bozhenkov Sergey, Braune Harald, Brunner Kai-Jakob, Chaudhary Neha, Damm Hannes, Fuchert Golo, Knauer Jens, Laqua Heinrich, Marsen Stefan, Moseev Dmitry, Pasch Ekkehard, Scott Evan R, Wilde Fabian, Wolf Robert
Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald, Germany.
Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald, GermanyDepartment of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, South KoreaDepartment of Astronomy and Astrophysics TUB, Hardenbergstr. 36, D-10623 Berlin, Germany.
Rev Sci Instrum. 2019 Apr;90(4):043502. doi: 10.1063/1.5082542.
This paper reports about a novel approach to the absolute intensity calibration of an electron cyclotron emission (ECE) spectroscopy system. Typically, an ECE radiometer consists of tens of separated frequency channels corresponding to different plasma locations. An absolute calibration of the overall diagnostic including near plasma optics and transmission line is achieved with blackbody sources at LN temperature and room temperature via a hot/cold calibration mirror unit. As the thermal emission of the calibration source is typically a few thousand times lower than the receiver noise temperature, coherent averaging over several hours is required to get a sufficient signal to noise ratio. A forward model suitable for any radiometer calibration using the hot/cold method and a periodic switch between them has been developed and used to extract the voltage difference between the hot and cold temperature source via Bayesian analysis. In contrast to the classical analysis which evaluates only the reference temperatures, the forward model takes into account intermediate effective temperatures caused by the finite beam width and thus uses all available data optimally. This allows the evaluation of weak channels where a classical analysis would not be feasible, is statistically rigorous, and provides a measurement of the beam width. By using a variance scaling factor, a model sensitive adaptation of the absolute uncertainties can be implemented, which will be used for the combined diagnostic Bayesian modeling analysis.
本文报道了一种用于电子回旋辐射(ECE)光谱系统绝对强度校准的新方法。通常,一个ECE辐射计由对应于不同等离子体位置的数十个分离的频率通道组成。通过一个热/冷校准镜单元,利用液氮温度和室温下的黑体源实现了包括近等离子体光学器件和传输线在内的整个诊断系统的绝对校准。由于校准源的热发射通常比接收器噪声温度低几千倍,因此需要数小时的相干平均才能获得足够的信噪比。已经开发了一种适用于使用热/冷方法的任何辐射计校准以及它们之间周期性切换的正向模型,并通过贝叶斯分析用于提取热和冷温度源之间的电压差。与仅评估参考温度的经典分析不同,正向模型考虑了由有限波束宽度引起的中间有效温度,从而最佳地利用了所有可用数据。这使得能够评估经典分析不可行的弱通道,具有统计严谨性,并提供波束宽度的测量值。通过使用方差缩放因子,可以实现对绝对不确定度的模型敏感调整,这将用于组合诊断贝叶斯建模分析。