Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg.
Epigenomics. 2019 May;11(6):619-638. doi: 10.2217/epi-2018-0084. Epub 2019 May 2.
Prediction of genes under dynamic post-transcriptional regulation from epigenomic data. We used time-series profiles of chromatin immunoprecipitation-seq data of histone modifications from differentiation of mesenchymal progenitor cells toward adipocytes and osteoblasts to predict gene expression levels at five time points in both lineages and estimated the deviation of those predictions from the RNA-seq measured expression levels using linear regression. The genes with biggest changes in their estimated stability across the time series are enriched for noncoding RNAs and lineage-specific biological processes. Clustering mRNAs according to their stability dynamics allows identification of post-transcriptionally coregulated mRNAs and their shared regulators through sequence enrichment analysis. We identify miR-204 as an early induced adipogenic microRNA targeting and .
从表观基因组数据预测动态转录后调控的基因。我们使用间充质祖细胞向脂肪细胞和成骨细胞分化过程中组蛋白修饰的染色质免疫沉淀测序数据的时间序列谱,来预测两个谱系中五个时间点的基因表达水平,并使用线性回归估计这些预测值与 RNA-seq 测量的表达水平的偏差。在整个时间序列中,其稳定性估计变化最大的基因富含非编码 RNA 和谱系特异性的生物过程。根据其稳定性动态对 mRNA 进行聚类,可通过序列富集分析鉴定出受转录后共同调控的 mRNA 及其共同调控因子。我们鉴定出 miR-204 是一种早期诱导的脂肪生成 microRNA,靶向和 。