Suppr超能文献

体内异质性组织中特定细胞类型的同步转录组和表观基因组分析

Simultaneous Transcriptional and Epigenomic Profiling from Specific Cell Types within Heterogeneous Tissues In Vivo.

作者信息

Roh Hyun Cheol, Tsai Linus T-Y, Lyubetskaya Anna, Tenen Danielle, Kumari Manju, Rosen Evan D

机构信息

Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.

Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA.

出版信息

Cell Rep. 2017 Jan 24;18(4):1048-1061. doi: 10.1016/j.celrep.2016.12.087.

Abstract

Epigenomic mechanisms direct distinct gene expression programs for different cell types. Various in vivo tissues have been subjected to epigenomic analysis; however, these studies have been limited by cellular heterogeneity, resulting in composite gene expression and epigenomic profiles. Here, we introduce "NuTRAP," a transgenic mouse that allows simultaneous isolation of cell-type-specific translating mRNA and chromatin from complex tissues. Using NuTRAP, we successfully characterize gene expression and epigenomic states of various adipocyte populations in vivo, revealing significant differences compared to either whole adipose tissue or in vitro adipocyte cell lines. We find that chromatin immunoprecipitation sequencing (ChIP-seq) using NuTRAP is highly efficient, scalable, and robust with even limited cell input. We further demonstrate the general utility of NuTRAP by analyzing hepatocyte-specific epigenomic states. The NuTRAP mouse is a resource that provides a powerful system for cell-type-specific gene expression and epigenomic profiling.

摘要

表观基因组机制指导不同细胞类型的独特基因表达程序。多种体内组织已接受表观基因组分析;然而,这些研究受到细胞异质性的限制,导致产生复合基因表达和表观基因组图谱。在此,我们介绍“NuTRAP”,一种转基因小鼠,它能够从复杂组织中同时分离出细胞类型特异性的正在翻译的mRNA和染色质。利用NuTRAP,我们成功地在体内表征了各种脂肪细胞群体的基因表达和表观基因组状态,揭示了与整个脂肪组织或体外脂肪细胞系相比的显著差异。我们发现,使用NuTRAP进行的染色质免疫沉淀测序(ChIP-seq)即使在细胞输入有限的情况下也高效、可扩展且稳健。我们通过分析肝细胞特异性表观基因组状态进一步证明了NuTRAP的普遍实用性。NuTRAP小鼠是一种资源,为细胞类型特异性基因表达和表观基因组分析提供了一个强大的系统。

相似文献

3
Epigenomics-Based Identification of Major Cell Identity Regulators within Heterogeneous Cell Populations.
Cell Rep. 2016 Dec 13;17(11):3062-3076. doi: 10.1016/j.celrep.2016.11.046.
5
Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states.
BMC Genomics. 2016 Jan 11;17 Suppl 1(Suppl 1):10. doi: 10.1186/s12864-015-2303-9.
6
A chromatin integration labelling method enables epigenomic profiling with lower input.
Nat Cell Biol. 2019 Feb;21(2):287-296. doi: 10.1038/s41556-018-0248-3. Epub 2018 Dec 10.
7
A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells.
Anim Genet. 2014 Aug;45 Suppl 1:40-50. doi: 10.1111/age.12147. Epub 2014 Jul 2.
8
Identification of genes under dynamic post-transcriptional regulation from time-series epigenomic data.
Epigenomics. 2019 May;11(6):619-638. doi: 10.2217/epi-2018-0084. Epub 2019 May 2.
9
Identifying dispersed epigenomic domains from ChIP-Seq data.
Bioinformatics. 2011 Mar 15;27(6):870-1. doi: 10.1093/bioinformatics/btr030. Epub 2011 Feb 16.
10
CoBATCH for High-Throughput Single-Cell Epigenomic Profiling.
Mol Cell. 2019 Oct 3;76(1):206-216.e7. doi: 10.1016/j.molcel.2019.07.015. Epub 2019 Aug 27.

引用本文的文献

2
Modeling tumor relapse using proliferation tracing and ablation transgenic mouse.
NPJ Breast Cancer. 2025 Jul 17;11(1):73. doi: 10.1038/s41523-025-00792-1.
3
An epigenome atlas of mouse adipocytes.
Mol Metab. 2025 Jun 27;99:102197. doi: 10.1016/j.molmet.2025.102197.
4
Creatine kinase B mediates UCP1-independent beige fat thermogenesis via the futile creatine cycle in mice.
Mol Metab. 2025 Aug;98:102193. doi: 10.1016/j.molmet.2025.102193. Epub 2025 Jun 23.
5
Parallel Gene Expression Changes in Ventral Midbrain Dopamine and GABA Neurons during Normal Aging.
eNeuro. 2025 May 29;12(5). doi: 10.1523/ENEURO.0107-25.2025. Print 2025 May.
6
Advanced RPL19-TRAP-seq method reveals mechanism of action of bioactive compounds.
Nat Prod Bioprospect. 2025 Mar 5;15(1):16. doi: 10.1007/s13659-025-00500-3.
7
Suprachiasmatic Neuromedin-S Neurons Regulate Arousal.
bioRxiv. 2025 Feb 22:2025.02.22.639648. doi: 10.1101/2025.02.22.639648.
10
Neurotensin-neurotensin receptor 2 signaling in adipocytes suppresses food intake through regulating ceramide metabolism.
Cell Res. 2025 Feb;35(2):117-131. doi: 10.1038/s41422-024-01038-8. Epub 2025 Jan 3.

本文引用的文献

1
IRF3 promotes adipose inflammation and insulin resistance and represses browning.
J Clin Invest. 2016 Aug 1;126(8):2839-54. doi: 10.1172/JCI86080. Epub 2016 Jul 11.
2
Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences.
Cell. 2016 Jun 16;165(7):1776-1788. doi: 10.1016/j.cell.2016.05.010. Epub 2016 May 26.
3
Multi-Omics of Single Cells: Strategies and Applications.
Trends Biotechnol. 2016 Aug;34(8):605-608. doi: 10.1016/j.tibtech.2016.04.004. Epub 2016 May 20.
4
Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):14006-11. doi: 10.1073/pnas.1519358112. Epub 2015 Oct 26.
5
Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state.
Nat Biotechnol. 2015 Nov;33(11):1165-72. doi: 10.1038/nbt.3383. Epub 2015 Oct 12.
6
ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors.
Nat Methods. 2015 Oct;12(10):963-965. doi: 10.1038/nmeth.3542. Epub 2015 Aug 17.
7
Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain.
Neuron. 2015 Jun 17;86(6):1369-84. doi: 10.1016/j.neuron.2015.05.018.
8
Does FACS perturb gene expression?
Cytometry A. 2015 Feb;87(2):166-75. doi: 10.1002/cyto.a.22608. Epub 2015 Jan 16.
9
CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.
Antioxid Redox Signal. 2015 Apr 1;22(10):819-31. doi: 10.1089/ars.2014.6017. Epub 2015 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验