Suppr超能文献

用于斯托克斯 - 米勒形式体系的四元数代数。

Quaternion algebra for Stokes-Mueller formalism.

作者信息

Kuntman Ertan, Kuntman Mehmet Ali, Canillas Adolf, Arteaga Oriol

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2019 Apr 1;36(4):492-497. doi: 10.1364/JOSAA.36.000492.

Abstract

In this paper, we show that the Stokes-Mueller formalism can be reformulated in terms of quaternions and that the quaternion algebra is a suitable alternative presentation of the formalism of Mueller-Jones states that we have recently described [J. Opt. Soc. Am. A34, 80 (2017)JOAOD60740-323210.1364/JOSAA.34.000080]. The vector and matrix states associated with the Mueller matrices of nondepolarizing optical systems are different representations that are isomorphic to the same quaternion state, and this quaternion state turns out to be the rotator of the Stokes quaternion. In this work, we study the properties of this general quaternion state and its application to the calculus of polarization effects. We also show that the coherent linear combination of nondepolarizing optical media states and depolarization phenomena can be reformulated in terms of quaternion states.

摘要

在本文中,我们表明斯托克斯 - 米勒形式体系可以用四元数重新表述,并且四元数代数是我们最近描述的米勒 - 琼斯态形式体系的一种合适的替代表示[《美国光学学会志》A34, 80 (2017)JOAOD60740 - 323210.1364/JOSAA.34.000080]。与非偏振光学系统的米勒矩阵相关联的矢量态和矩阵态是不同的表示形式,它们与同一个四元数态同构,并且这个四元数态原来是斯托克斯四元数的旋转器。在这项工作中,我们研究这个一般四元数态的性质及其在偏振效应计算中的应用。我们还表明,非偏振光学介质态的相干线性组合和去偏振现象可以用四元数态重新表述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验