Chu Jiayu, Sun Yanchun, Han Xijiang, Zhang Bin, Du Yunchen, Song Bo, Xu Ping
Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture , Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences , Harbin 150070 , China.
ACS Appl Mater Interfaces. 2019 May 22;11(20):18475-18482. doi: 10.1021/acsami.9b04787. Epub 2019 May 10.
Titanium dioxide is a promising photocatalyst material for water splitting, but is limited by its low utilization of solar energy and rapid recombination of electron-hole pairs. Herein, a mixed titanium oxide strategy, utilizing TiO/TiO heterostructures consisting of in situ grown TiO nanotubes with mixed anatase and rutile phases on bulk TiO materials, is demonstrated for efficient and recyclable hydrogen evolution from photocatalytic water splitting. Taking advantage of the formed heterostructures and the created porous structures, the photogenerated electrons from the conduction band of anatase TiO can be first delivered to rutile TiO and then transferred to TiO. Meanwhile, the presence of TiO in TiO/TiO heterostructures can substantially promote the charge mobility and suppress the recombination of photogenerated electron-hole pairs. Hence, with a tuned band gap structure that enables rapid electron-hole separation, increased charge carrier density, and enhanced light absorption, the TiO/TiO heterostructures provide an enhanced photocatalytic hydrogen evolution rate as high as 1440 μmol g h under full-sunlight irradiation and without any other cocatalyst. This mixed titanium oxide strategy may open up new avenues for designing and constructing highly efficient TiO-based photocatalytic materials for various applications.
二氧化钛是一种很有前景的用于水分解的光催化剂材料,但受限于其对太阳能的低利用率以及电子 - 空穴对的快速复合。在此,展示了一种混合钛氧化物策略,该策略利用由在块状TiO材料上原位生长的具有锐钛矿和金红石混合相的TiO纳米管组成的TiO/TiO异质结构,用于光催化水分解高效且可循环地析氢。利用形成的异质结构和所产生的多孔结构,来自锐钛矿TiO导带的光生电子可首先传递至金红石TiO,然后转移至TiO。同时,TiO/TiO异质结构中TiO的存在可大幅促进电荷迁移并抑制光生电子 - 空穴对的复合。因此,通过调整能带隙结构以实现快速的电子 - 空穴分离、增加载流子密度并增强光吸收,TiO/TiO异质结构在全光照下且无需任何其他助催化剂的情况下提供了高达1440 μmol g⁻¹ h⁻¹的增强光催化析氢速率。这种混合钛氧化物策略可能为设计和构建用于各种应用的高效TiO基光催化材料开辟新途径。