Department of Neurology, University of Texas Health Science Center, Houston, TX, United States.
Department of Neurology, University of Texas Health, San Antonio, TX, United States.
Epilepsy Res. 2019 Aug;154:50-54. doi: 10.1016/j.eplepsyres.2019.04.008. Epub 2019 Apr 18.
Ketamine, a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, used as an anesthetic has been reported to induce seizures both in humans and baboons predisposed to epilepsy. In this study, we aimed to characterize the acute effects of ketamine on scalp (sc-EEG) and intracranial EEG (ic-EEG) in the baboon, which offers a natural model of genetic generalized epilepsy (GGE). We evaluated the electroclinical response to ketamine in three epileptic baboons. The raw EEG data were analyzed within 10 min of intramuscular ketamine (5-6 mg/kg) administration. Earliest EEG changes occurred after 30 s in sc-EEG and after 15 s in ic-EEG of ketamine administration. These initial changes involved increased paroxysmal fast activity (PFA) followed by slowing, the latter emerging first occipitally, and then spreading more anteriorly. Generalized spike-and-wave discharges (GSWDs) were evident on both sc-EEG and ic-EEG within two minutes, but focal occipital discharges were already increased on ic-EEG after 15 s. Occipital slowing emerged on ic-EEG after 30 s, before spreading fronto-centrally and orbito-frontally. By 60-120 seconds post-injection, ic-EEG demonstrated a parieto-occipital burst suppression (BS), which was not noted on sc-EEG. Ketamine waves and seizures, especially if the latter were subclinical, also appeared earlier on ic-EEG. This study highlights the anesthetic and proconvulsant effects of ketamine originate in the occipital lobes before fronto-central regions. We speculate that NMDAR concentration difference in cortical regions, such as the occipital and frontal cortices, are mainly involved in the expression of ketamine's EEG effects, both physiological and epileptic.
氯胺酮,一种非竞争性 N-甲基-D-天冬氨酸受体 (NMDAR) 拮抗剂,作为麻醉剂已被报道在人类和易患癫痫的狒狒中诱发癫痫发作。在这项研究中,我们旨在描述氯胺酮对狒狒头皮 (sc-EEG) 和颅内 EEG (ic-EEG) 的急性影响,狒狒提供了一种遗传性全面性癫痫 (GGE) 的天然模型。我们评估了三种癫痫狒狒对氯胺酮的电临床反应。在肌肉内给予氯胺酮 (5-6mg/kg) 后 10 分钟内分析原始 EEG 数据。sc-EEG 中最早的 EEG 变化发生在氯胺酮给药后 30 秒,ic-EEG 中最早的 EEG 变化发生在氯胺酮给药后 15 秒。这些初始变化涉及阵发性快活动 (PFA) 的增加,随后出现减速,减速首先出现在枕部,然后向前扩散。sc-EEG 和 ic-EEG 中在两分钟内出现全身性棘波和慢波放电 (GSWDs),但在 15 秒后 ic-EEG 中已经出现了局灶性枕部放电。枕部减速在 ic-EEG 中在 30 秒后出现,然后在额-中央和眶额前部扩散。在注射后 60-120 秒,ic-EEG 显示顶枕部爆发抑制 (BS),而 sc-EEG 上则没有。氯胺酮波和癫痫发作,特别是如果后者是亚临床的,也在 ic-EEG 上更早出现。这项研究强调了氯胺酮的麻醉和致惊厥作用起源于枕叶,然后在前额-中央区域。我们推测,皮质区域(如枕叶和额叶皮质)中 NMDAR 浓度的差异主要涉及氯胺酮的 EEG 效应的表达,包括生理和癫痫。