Ławniczak Michał, Lipovský Jiří, Sirko Leszek
Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland.
Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czechia.
Phys Rev Lett. 2019 Apr 12;122(14):140503. doi: 10.1103/PhysRevLett.122.140503.
One of the most important characteristics of a quantum graph is the average density of resonances, ρ=(L/π), where L denotes the length of the graph. This is a very robust measure. It does not depend on the number of vertices in a graph and holds also for most of the boundary conditions at the vertices. Graphs obeying this characteristic are called Weyl graphs. Using microwave networks that simulate quantum graphs we show that there exist graphs that do not adhere to this characteristic. Such graphs are called non-Weyl graphs. For standard coupling conditions we demonstrate that the transition from a Weyl graph to a non-Weyl graph occurs if we introduce a balanced vertex. A vertex of a graph is called balanced if the numbers of infinite leads and internal edges meeting at a vertex are the same. Our experimental results confirm the theoretical predictions of [E. B. Davies and A. Pushnitski, Analysis and PDE 4, 729 (2011)] and are in excellent agreement with the numerical calculations yielding the resonances of the networks.
量子图的最重要特征之一是共振的平均密度,ρ =(L/π),其中L表示图的长度。这是一种非常稳健的度量。它不依赖于图中的顶点数量,并且对于顶点处的大多数边界条件也成立。服从这一特征的图称为魏尔图。通过使用模拟量子图的微波网络,我们表明存在不遵循这一特征的图。这样的图称为非魏尔图。对于标准耦合条件,我们证明,如果引入一个平衡顶点,就会发生从魏尔图到非魏尔图的转变。如果在一个顶点处相交的无限引线和内部边的数量相同,则称该图的顶点是平衡的。我们的实验结果证实了[E. B. 戴维斯和A. 普什尼茨基,《分析与偏微分方程》4, 729 (2011)]的理论预测,并且与产生网络共振的数值计算结果非常吻合。