Frese Daniel, Wei Qunshuo, Wang Yongtian, Huang Lingling, Zentgraf Thomas
Department of Physics , Paderborn University , Warburger Straße 100 , 33098 Paderborn , Germany.
School of Optics and Photonics , Beijing Institute of Technology , 100081 , Beijing , China.
Nano Lett. 2019 Jun 12;19(6):3976-3980. doi: 10.1021/acs.nanolett.9b01298. Epub 2019 May 9.
As flexible optical devices that can manipulate the phase and amplitude of light, metasurfaces would clearly benefit from directional optical properties. However, single layer metasurface systems consisting of two-dimensional nanoparticle arrays exhibit only a weak spatial asymmetry perpendicular to the surface and therefore have mostly symmetric transmission features. Here, we present a metasurface design principle for nonreciprocal polarization encryption of holographic images. Our approach is based on a two-layer plasmonic metasurface design that introduces a local asymmetry and generates a bidirectional functionality with full phase and amplitude control of the transmitted light. The encoded hologram is designed to appear in a particular linear cross-polarization channel, while it is disappearing in the reverse propagation direction. Hence, layered metasurface systems can feature asymmetric transmission with full phase and amplitude control and therefore expand the design freedom in nanoscale optical devices toward asymmetric information processing and security features for anticounterfeiting applications.
作为能够操纵光的相位和幅度的柔性光学器件,超表面显然将受益于定向光学特性。然而,由二维纳米粒子阵列组成的单层超表面系统仅表现出垂直于表面的微弱空间不对称性,因此大多具有对称的透射特性。在这里,我们提出了一种用于全息图像非互易偏振加密的超表面设计原理。我们的方法基于双层等离子体超表面设计,该设计引入了局部不对称性,并通过对透射光的全相位和幅度控制产生双向功能。编码全息图被设计为出现在特定的线性交叉偏振通道中,而在反向传播方向上消失。因此,分层超表面系统可以具有全相位和幅度控制的不对称透射特性,从而将纳米级光学器件的设计自由度扩展到用于防伪应用的不对称信息处理和安全特性。