Suppr超能文献

大脑如何从意识状态转变到潜意识状态。

How the Brain Transitions from Conscious to Subliminal Perception.

机构信息

Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA.

Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Neuroscience. 2019 Jul 15;411:280-290. doi: 10.1016/j.neuroscience.2019.03.047. Epub 2019 May 1.

Abstract

We study the transition in the functional networks that characterize the human brains' conscious-state to an unconscious subliminal state of perception by using k-core percolation. We find that the most inner core (i.e., the most connected kernel) of the conscious-state functional network corresponds to areas which remain functionally active when the brain transitions from the conscious-state to the subliminal-state. That is, the inner core of the conscious network coincides with the subliminal-state. Mathematical modeling allows to interpret the conscious to subliminal transition as driven by k-core percolation, through which the conscious state is lost by the inactivation of the peripheral k-shells of the conscious functional network. Thus, the inner core and most robust component of the conscious brain corresponds to the unconscious subliminal state. This finding imposes constraints to theoretical models of consciousness, in that the location of the core of the functional brain network is in the unconscious part of the brain rather than in the conscious state as previously thought.

摘要

我们通过使用核心渗透(k-core percolation)来研究人类大脑从有意识状态向无意识潜意识感知状态转变过程中的功能网络转变。我们发现,有意识状态功能网络的最内层核心(即最连通的内核)对应于大脑从有意识状态向潜意识状态转变时仍然保持功能活跃的区域。也就是说,有意识网络的内层核心与潜意识状态重合。数学建模允许我们将有意识到潜意识的转变解释为核心渗透驱动的,通过这种渗透,有意识状态通过有意识功能网络的外围 k 壳的失活而丧失。因此,有意识大脑的内层核心和最稳健的组成部分对应于无意识的潜意识状态。这一发现对意识的理论模型提出了限制,即功能脑网络核心的位置位于大脑的无意识部分,而不是之前认为的有意识状态。

相似文献

1
How the Brain Transitions from Conscious to Subliminal Perception.
Neuroscience. 2019 Jul 15;411:280-290. doi: 10.1016/j.neuroscience.2019.03.047. Epub 2019 May 1.
2
Neural mechanisms underlying conscious and unconscious attentional shifts triggered by eye gaze.
Neuroimage. 2016 Jan 1;124(Pt A):118-126. doi: 10.1016/j.neuroimage.2015.08.061. Epub 2015 Sep 4.
3
Intrinsic functional connectivity of the brain swallowing network during subliminal esophageal acid stimulation.
Neurogastroenterol Motil. 2013 Dec;25(12):992-e779. doi: 10.1111/nmo.12238. Epub 2013 Oct 8.
6
A window of subliminal perception.
Behav Brain Res. 2022 May 24;426:113842. doi: 10.1016/j.bbr.2022.113842. Epub 2022 Mar 14.
7
Distinct neural responses to conscious versus unconscious monetary reward cues.
Hum Brain Mapp. 2014 Nov;35(11):5578-86. doi: 10.1002/hbm.22571. Epub 2014 Jul 2.
8
9
Statistical mechanics of consciousness: Maximization of information content of network is associated with conscious awareness.
Phys Rev E. 2016 Nov;94(5-1):052402. doi: 10.1103/PhysRevE.94.052402. Epub 2016 Nov 8.
10
Temporal circuit of macroscale dynamic brain activity supports human consciousness.
Sci Adv. 2020 Mar 11;6(11):eaaz0087. doi: 10.1126/sciadv.aaz0087. eCollection 2020 Mar.

引用本文的文献

1
"Sentio ergo est": Unmasking the psychological realities of emotional misperception.
Perception. 2025 Jan;54(1):3-31. doi: 10.1177/03010066241302996. Epub 2024 Dec 9.
3
Percolation may explain efficiency, robustness, and economy of the brain.
Netw Neurosci. 2022 Jul 1;6(3):765-790. doi: 10.1162/netn_a_00246. eCollection 2022 Jul.
4
A robust core architecture of functional brain networks supports topological resilience and cognitive performance in middle- and old-aged adults.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2203682119. doi: 10.1073/pnas.2203682119. Epub 2022 Oct 25.
7
K-core robustness in ecological and financial networks.
Sci Rep. 2020 Feb 25;10(1):3357. doi: 10.1038/s41598-020-59959-4.
8
Core language brain network for fMRI language task used in clinical applications.
Netw Neurosci. 2020 Feb 1;4(1):134-154. doi: 10.1162/netn_a_00112. eCollection 2020.

本文引用的文献

1
K-core robustness in ecological and financial networks.
Sci Rep. 2020 Feb 25;10(1):3357. doi: 10.1038/s41598-020-59959-4.
2
Finding influential nodes for integration in brain networks using optimal percolation theory.
Nat Commun. 2018 Jun 11;9(1):2274. doi: 10.1038/s41467-018-04718-3.
3
The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.
Science. 2018 May 4;360(6388):537-542. doi: 10.1126/science.aar7186. Epub 2018 Mar 22.
4
Beyond Functional Connectivity: Investigating Networks of Multivariate Representations.
Trends Cogn Sci. 2018 Mar;22(3):258-269. doi: 10.1016/j.tics.2017.12.002. Epub 2018 Jan 2.
5
Network control principles predict neuron function in the Caenorhabditis elegans connectome.
Nature. 2017 Oct 26;550(7677):519-523. doi: 10.1038/nature24056. Epub 2017 Oct 18.
6
Integrated information theory: from consciousness to its physical substrate.
Nat Rev Neurosci. 2016 Jul;17(7):450-61. doi: 10.1038/nrn.2016.44. Epub 2016 May 26.
7
Universal resilience patterns in complex networks.
Nature. 2016 Feb 18;530(7590):307-12. doi: 10.1038/nature16948.
8
Emergence of core-peripheries in networks.
Nat Commun. 2016 Jan 29;7:10441. doi: 10.1038/ncomms10441.
9
Identification of core-periphery structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032803. doi: 10.1103/PhysRevE.91.032803. Epub 2015 Mar 6.
10
Identification of optimal structural connectivity using functional connectivity and neural modeling.
J Neurosci. 2014 Jun 4;34(23):7910-6. doi: 10.1523/JNEUROSCI.4423-13.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验