Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, 08018, Spain, Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
Rotman Research Institute of Baycrest Center, University of Toronto, Toronto, Ontario M6A 2E1, Canada,
J Neurosci. 2014 Jun 4;34(23):7910-6. doi: 10.1523/JNEUROSCI.4423-13.2014.
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
大脑结构和功能架构的相互作用所产生的复杂网络动态导致了心理功能。理论模型表明,当全局网络动力学在状态转变的临界点运行时,结构-功能关系达到最大值。在本工作中,我们使用动态平均场神经模型来拟合在人类和猕猴中获得的经验结构连接(SC)和功能连接(FC)数据,并开发了一种新的迭代拟合算法,根据 FC 矩阵来优化 SC 矩阵。通过增加少量的解剖连接,特别是半球间连接,并重新加权现有的连接,矩阵的拟合得到了显著改善。我们认为,临界点的概念,即结构-功能相互作用最大化的点,可能为连接行为和认知提供一种新的方法,并为理解临床条件下的功能恢复提供一个新的视角。