Volkov Mikhail, Pupeikis Justinas, Phillips Christopher R, Schlaepfer Fabian, Gallmann Lukas, Keller Ursula
Opt Express. 2019 Mar 18;27(6):7886-7895. doi: 10.1364/OE.27.007886.
We present a scheme for correcting the spectral fluctuations of high-harmonic radiation. We show that the fluctuations of the extreme-ultraviolet (XUV) spectral power density can be predicted solely by monitoring the generating laser pulses; this method is in contrast with traditional balanced detection used in optical spectroscopy, where a replica of the signal is monitored. Such possibility emerges from a detailed investigation of high-harmonic generation (HHG) noise. We find that in a wide parameter range of the HHG process, the XUV fluctuations are dominated by a spectral blueshift, which is correlated to the near-infrared (NIR) driving laser intensity variation. Numerical simulations support our findings and suggest that non-adiabatic blueshift is the main source of XUV fluctuations. A straightforward post-processing of the XUV spectra allows for noise reduction and improved precision of attosecond transient absorption experiments. The technique is readily transferable to attosecond transient reflectivity and potentially to attosecond photoelectron spectroscopy.
我们提出了一种校正高次谐波辐射光谱波动的方案。我们表明,极紫外(XUV)光谱功率密度的波动仅通过监测产生激光脉冲就可以预测;这种方法与光谱学中使用的传统平衡检测形成对比,在传统平衡检测中监测的是信号的副本。这种可能性源于对高次谐波产生(HHG)噪声的详细研究。我们发现,在高次谐波产生过程的广泛参数范围内,XUV波动主要由光谱蓝移主导,而光谱蓝移与近红外(NIR)驱动激光强度变化相关。数值模拟支持了我们的发现,并表明非绝热蓝移是XUV波动的主要来源。对XUV光谱进行直接的后处理可以降低噪声,并提高阿秒瞬态吸收实验的精度。该技术很容易转移到阿秒瞬态反射率测量,甚至可能应用于阿秒光电子能谱。