Kretschmar Martin, Svirplys Evaldas, Volkov Mikhail, Witting Tobias, Nagy Tamás, Vrakking Marc J J, Schütte Bernd
Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany.
Sci Adv. 2024 Feb 23;10(8):eadk9605. doi: 10.1126/sciadv.adk9605. Epub 2024 Feb 21.
The ability to perform attosecond-pump attosecond-probe spectroscopy (APAPS) is a longstanding goal in ultrafast science. While first pioneering experiments demonstrated the feasibility of APAPS, the low repetition rates (10 to 120 Hz) and the large footprints of existing setups have so far hindered the widespread exploitation of APAPS. Here, we demonstrate two-color APAPS using a commercial laser system at 1 kHz, straightforward post-compression in a hollow-core fiber, and a compact high-harmonic generation (HHG) setup. The latter enables the generation of intense extreme-ultraviolet (XUV) pulses by using an out-of-focus HHG geometry and by exploiting a transient blueshift of the driving laser in the HHG medium. Near-isolated attosecond pulses are generated, as demonstrated by one-color and two-color XUV-pump XUV-probe experiments. Our concept allows selective pumping and probing on extremely short timescales in many laboratories and permits investigations of fundamental processes that are not accessible by other pump-probe techniques.
实现阿秒脉冲泵浦-阿秒脉冲探测光谱学(APAPS)是超快科学领域长期以来的目标。虽然最初的开创性实验证明了APAPS的可行性,但迄今为止,现有装置的低重复率(10至120赫兹)和较大的占地面积阻碍了APAPS的广泛应用。在此,我们展示了利用1千赫兹的商用激光系统、在空心光纤中进行直接后压缩以及紧凑的高次谐波产生(HHG)装置实现双色APAPS。后者通过使用离焦HHG几何结构并利用驱动激光在HHG介质中的瞬态蓝移,能够产生高强度极紫外(XUV)脉冲。通过单色和双色XUV泵浦-XUV探测实验证明,产生了近孤立的阿秒脉冲。我们的概念允许在许多实验室中在极短的时间尺度上进行选择性泵浦和探测,并允许研究其他泵浦-探测技术无法触及的基本过程。