Suppr超能文献

在多地点、罕见事件、分布式环境中应用使用回归调整或加权来控制混杂的连续监测方法:对麻疹-腮腺炎-风疹-水痘联合疫苗和癫痫发作风险的重新分析的深入示例。

Applying sequential surveillance methods that use regression adjustment or weighting to control confounding in a multisite, rare-event, distributed setting: Part 2 in-depth example of a reanalysis of the measles-mumps-rubella-varicella combination vaccine and seizure risk.

机构信息

Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.

Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.

出版信息

J Clin Epidemiol. 2019 Sep;113:114-122. doi: 10.1016/j.jclinepi.2019.04.019. Epub 2019 May 2.

Abstract

OBJECTIVE

In-depth example of two new group sequential methods for postmarket safety monitoring of new medical products.

STUDY DESIGN AND SETTING

Existing trial-based group sequential approaches have been extended to adjust for confounders, accommodate rare events, and address privacy-related constraints on data sharing. Most adaptations have involved design-based confounder strategies, for example, self-controlled or exposure matching, while analysis-based approaches like regression and weighting have received less attention. We describe the methodology of two new group sequential approaches that use analysis-based confounder adjustment (GS GEE) and weighting (GS IPTW). Using data from the Food and Drug Administration's Sentinel network, we apply both methods in the context of a known positive association: the measles-mumps-rubella-varicella vaccine and seizure risk in infants.

RESULTS

Estimates from both new approaches were similar and comparable to prior studies using design-based methods to address confounding. The time to detection of a safety signal was considerably shorter for GS IPTW, which estimates a risk difference, compared to GS GEE, which provides relative estimates of excess risk.

CONCLUSION

Future group sequential safety surveillance efforts should consider analysis-based confounder adjustment techniques that evaluate safety signals on the risk difference scale to achieve greater statistical power and more timely results.

摘要

目的

深入探讨两种新的用于新医疗产品上市后安全性监测的群组序贯方法。

研究设计与设置

已将现有的基于试验的群组序贯方法进行扩展,以调整混杂因素、适应罕见事件,并解决与数据共享相关的隐私限制。大多数适应性调整都涉及基于设计的混杂因素策略,例如自我对照或暴露匹配,而基于分析的方法,如回归和加权,受到的关注较少。我们描述了两种新的群组序贯方法的方法,这些方法使用基于分析的混杂因素调整(GS GEE)和加权(GS IPTW)。我们使用 FDA 哨兵网络的数据,在一个已知的阳性关联(麻疹、腮腺炎、风疹和水痘疫苗与婴儿癫痫发作风险)的背景下应用这两种方法。

结果

两种新方法的估计值相似,与使用基于设计的方法来解决混杂因素的先前研究结果相当。与提供超额风险相对估计的 GS GEE 相比,GS IPTW 用于估计风险差异,其检测安全信号的时间要短得多。

结论

未来的群组序贯安全性监测工作应考虑基于分析的混杂因素调整技术,该技术在风险差异尺度上评估安全性信号,以获得更大的统计效力和更及时的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验