Suppr超能文献

可视化学习者参与度、表现和轨迹,以评估和优化在线课程设计。

Visualizing learner engagement, performance, and trajectories to evaluate and optimize online course design.

机构信息

Department of Intelligent Systems Engineering, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America.

The Boeing Company, Everett, Washington, United States of America.

出版信息

PLoS One. 2019 May 6;14(5):e0215964. doi: 10.1371/journal.pone.0215964. eCollection 2019.

Abstract

Learning analytics and visualizations make it possible to examine and communicate learners' engagement, performance, and trajectories in online courses to evaluate and optimize course design for learners. This is particularly valuable for workforce training involving employees who need to acquire new knowledge in the most effective manner. This paper introduces a set of metrics and visualizations that aim to capture key dynamical aspects of learner engagement, performance, and course trajectories. The metrics are applied to identify prototypical behavior and learning pathways through and interactions with course content, activities, and assessments. The approach is exemplified and empirically validated using more than 30 million separate logged events that capture activities of 1,608 Boeing engineers taking the MITxPro Course, "Architecture of Complex Systems," delivered in Fall 2016. Visualization results show course structure and patterns of learner interactions with course material, activities, and assessments. Tree visualizations are used to represent course hierarchical structures and explicit sequence of content modules. Learner trajectory networks represent pathways and interactions of individual learners through course modules, revealing patterns of learner engagement, content access strategies, and performance. Results provide evidence for instructors and course designers for evaluating the usage and effectiveness of course materials and intervention strategies.

摘要

学习分析和可视化使得检查和交流在线课程中学生的参与度、表现和轨迹成为可能,从而评估和优化学习者的课程设计。这对于涉及需要以最有效的方式获取新知识的员工的劳动力培训尤其有价值。本文介绍了一组旨在捕获学习者参与度、表现和课程轨迹的关键动态方面的指标和可视化方法。这些指标用于通过和通过课程内容、活动和评估的交互来识别典型行为和学习途径。该方法使用超过 3000 万条单独记录的事件进行了例证和实证验证,这些事件记录了 1608 名波音工程师在 2016 年秋季参加麻省理工学院专业在线课程“复杂系统架构”的活动。可视化结果显示了课程结构和学习者与课程材料、活动和评估的交互模式。使用三种树状图来表示课程的层次结构和内容模块的显式序列。学习者轨迹网络代表了个体学习者通过课程模块的途径和交互,揭示了学习者参与度、内容访问策略和表现的模式。结果为教师和课程设计师提供了评估课程材料和干预策略的使用和有效性的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b1/6502341/2d17442316b3/pone.0215964.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验