State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Chemosphere. 2019 Aug;228:602-610. doi: 10.1016/j.chemosphere.2019.04.149. Epub 2019 Apr 25.
Recent studies have reported a novel advanced oxidation process (AOP) by combining permanganate (KMnO) and peroxymonosulfate (PMS) for destruction of organic contaminants (i.e., acid orange 7, trichloroethylene, and benzene), where hydroxyl (OH) and sulfate radicals (SO) are proposed to be generated from PMS activation by amorphous manganese dioxide (MnO) formed in situ from KMnO reduction. In this work, appreciable degradation of p-chlorobenzoic acid (p-CBA) was confirmed in KMnO/PMS system, while KMnO or PMS alone showed inert reactivity toward p-CBA. Moreover, it was found that pre-synthesized amorphous MnO showed invalid PMS activation for p-CBA degradation, and pre-addition of inorganic or organic reducing agents to promote the formation of amorphous MnO showed negligible influence on p-CBA degradation as well. In these regards, a tentative mechanism for PMS activation by KMnO rather than its product MnO was proposed, involving the substitution of oxo atoms of KMnO by peroxo groups, subsequent reductive generation of peroxomanganese (VI) complexes, and intramolecular disproportionation of these complexes to generate radicals. Efficient degradation of p-CBA was achieved at acid or basic conditions with a maximum rate occurring at pH 3. The coexisting chloride anions showed suppressive effect on p-CBA degradation for scavenging SO and OH, while metal ions accelerated the degradation of p-CBA, possibly due to the cation bridging function between negatively-charged MnO and HSO. Hydroxylated intermediates of p-CBA were identified in KMnO/PMS system. This work improved the fundamental understanding of a new class of AOPs by combining KMnO and PMS for environmental decontamination.
最近的研究报告了一种新的高级氧化工艺(AOP),即将高锰酸盐(KMnO)和过一硫酸盐(PMS)结合使用,以破坏有机污染物(例如,酸性橙 7、三氯乙烯和苯),其中羟基(OH)和硫酸根自由基(SO)据推测是由原位形成的无定形二氧化锰(MnO)活化 PMS 生成的。在这项工作中,在 KMnO/PMS 体系中确认了对对氯苯甲酸(p-CBA)的可观降解,而单独的 KMnO 或 PMS 对 p-CBA 表现出惰性反应性。此外,发现预先合成的无定形 MnO 对 p-CBA 的降解无效,并且预先添加无机或有机还原剂以促进无定形 MnO 的形成对 p-CBA 的降解也几乎没有影响。在这些方面,提出了一种通过 KMnO 而不是其产物 MnO 活化 PMS 的推测机制,涉及 KMnO 中氧原子的取代与过氧基团,随后还原生成过锰(VI)配合物,以及这些配合物的分子内歧化生成自由基。在酸性或碱性条件下,p-CBA 的降解效率很高,最大速率出现在 pH 3 时。共存的氯离子通过清除 SO 和 OH 对 p-CBA 的降解表现出抑制作用,而金属离子加速了 p-CBA 的降解,这可能是由于带负电荷的 MnO 和 HSO 之间的阳离子桥接作用。在 KMnO/PMS 体系中鉴定了 p-CBA 的羟基化中间产物。这项工作通过将 KMnO 和 PMS 结合使用来改善对环境去污的新型 AOP 的基本理解。