Adnew Getachew A, Hofmann Magdalena E G, Paul Dipayan, Laskar Amzad, Surma Jakub, Albrecht Nina, Pack Andreas, Schwieters Johannes, Koren Gerbrand, Peters Wouter, Röckmann Thomas
Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, The Netherlands.
Centre for Isotope Research, University of Groningen, The Netherlands.
Rapid Commun Mass Spectrom. 2019 Sep 15;33(17):1363-1380. doi: 10.1002/rcm.8478.
Determination of δ O values directly from CO with traditional gas source isotope ratio mass spectrometry is not possible due to isobaric interference of C O O on C O O. The methods developed so far use either chemical conversion or isotope equilibration to determine the δ O value of CO . In addition, δ C measurements require correction for the interference from C O O on C O O since it is not possible to resolve the two isotopologues.
We present a technique to determine the δ O, δ O and δ C values of CO from the fragment ions that are formed upon electron ionization in the ion source of the Thermo Scientific 253 Ultra high-resolution isotope ratio mass spectrometer (hereafter 253 Ultra). The new technique is compared with the CO -O exchange method and the O-correction algorithm for δ O and δ C values, respectively.
The scale contractions for δ C and δ O values are slightly larger for fragment ion measurements than for molecular ion measurements. The δ O and Δ O values of CO can be measured on the O fragment with an internal error that is a factor 1-2 above the counting statistics limit. The ultimate precision depends on the signal intensity and on the total time that the O beam is monitored; a precision of 14 ppm (parts per million) (standard error of the mean) was achieved in 20 hours at the University of Göttingen. The Δ O measurements with the O-fragment method agree with the CO -O exchange method over a range of Δ O values of -0.3 to +0.7‰.
Isotope measurements on atom fragment ions of CO can be used as an alternative method to determine the carbon and oxygen isotopic composition of CO without chemical processing or corrections for mass interferences.
由于(^{13}C^{16}O^{16}O)对(^{13}C^{16}O^{18}O)存在同量异位素干扰,使用传统气体源同位素比率质谱法直接从一氧化碳中测定(\delta^{18}O)值是不可能的。到目前为止所开发的方法要么使用化学转化,要么使用同位素平衡来测定一氧化碳的(\delta^{18}O)值。此外,(\delta^{13}C)测量需要校正(^{13}C^{16}O^{16}O)对(^{13}C^{16}O^{18}O)的干扰,因为无法分辨这两种同位素异构体。
我们提出了一种技术,可从热电科学公司253超高分辨率同位素比率质谱仪(以下简称253 Ultra)离子源中电子电离时形成的碎片离子来测定一氧化碳的(\delta^{18}O)、(\Delta^{17}O)和(\delta^{13}C)值。分别将这项新技术与一氧化碳-氧交换法以及(\delta^{18}O)和(\delta^{13}C)值的(^{17}O)校正算法进行了比较。
对于碎片离子测量,(\delta^{13}C)和(\delta^{18}O)值的标度收缩比分子离子测量时略大。一氧化碳的(\delta^{18}O)和(\Delta^{17}O)值可以在(^{17}O)碎片上进行测量,其内部误差比计数统计极限高1至2倍。最终精度取决于信号强度以及监测(^{17}O)束的总时间;在哥廷根大学,20小时内实现了14 ppm(百万分之一)(平均标准误差)的精度。在(\Delta^{17}O)值为 -0.3至 +0.7‰ 的范围内,用(^{17}O)碎片法进行的(\Delta^{17}O)测量结果与一氧化碳-氧交换法一致。
对一氧化碳的原子碎片离子进行同位素测量可作为一种替代方法,用于在不进行化学处理或质量干扰校正的情况下测定一氧化碳的碳和氧同位素组成。