Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan.
ACS Chem Biol. 2019 Jun 21;14(6):1280-1292. doi: 10.1021/acschembio.9b00259. Epub 2019 May 14.
Chemoenzymatic peptide synthesis is an efficient and clean method to generate polypeptides for new applications in the fields of biomedical and functional materials. However, this enzyme-mediated synthesis is dependent on the reaction rate of the protease biocatalyst, which is essentially determined by the natural substrate specificity of the enzyme. Papain, one of the most studied cysteine proteases, is extensively used for the chemoenzymatic synthesis of new polypeptides. Similar to most proteases, papain displays high stereospecificity toward l-amino acids, with limited reactivity for the d-stereoisomer counterparts. However, the incorporation of d-amino acids into peptides is a promising approach to increase their biostability by conferring intrinsic resistance to proteolysis. Herein, we determined the stereospecific-limiting step of the papain-mediated polymerization reaction with the chiral substrates l/d-alanine ethyl ester (Ala-OEt). Afterward, we used Quantum Mechanics/Molecular Mechanics (QM/MM) simulations to study the catalytic mechanism at atomic level of detail and investigate the origin of its stereospecificity. The experimental and computational results show that papain is able to attack both l- and d-stereoisomers of Ala-OEt, forming an enzyme-substrate intermediate, and that the two reactions display a similar activation barrier. Moreover, we found that the reduced catalytic activity of papain in the polymerization of d-amino acids arises from the aminolysis step of the reaction, in which l-Ala-OEt displays a significantly lower free-energy barrier (12 kcal/mol) than d-Ala-OEt (30 kcal/mol). Further simulations suggest that the main factor affecting the polymerization of d-amino acids is the configuration of the d-acyl-intermediate enzyme, and in particular the orientation of its methyl group, which hinders the nucleophilic attack by other monomers and thus the formation of polypeptides.
酶促肽合成是一种生成用于生物医药和功能材料领域新应用的多肽的有效且清洁的方法。然而,这种酶介导的合成依赖于蛋白酶生物催化剂的反应速率,而这主要取决于酶的天然底物特异性。木瓜蛋白酶是研究最多的半胱氨酸蛋白酶之一,被广泛用于新多肽的化学酶促合成。与大多数蛋白酶一样,木瓜蛋白酶对 l-氨基酸具有很高的立体特异性,对 d-立体异构体的反应性有限。然而,将 d-氨基酸掺入肽中是一种通过赋予内在的抗蛋白水解性来增加其生物稳定性的有前途的方法。在此,我们用手性底物 l/d-丙氨酸乙酯 (Ala-OEt) 确定了木瓜蛋白酶介导的聚合反应的立体专性限制步骤。之后,我们使用量子力学/分子力学 (QM/MM) 模拟从原子水平详细研究了其催化机制,并探讨了其立体专性的起源。实验和计算结果表明,木瓜蛋白酶能够攻击 Ala-OEt 的 l-和 d-两种立体异构体,形成酶-底物中间物,并且两种反应显示出相似的活化能垒。此外,我们发现,木瓜蛋白酶在 d-氨基酸聚合中的催化活性降低是由于反应的氨解步骤,其中 l-Ala-OEt 的自由能垒(12 kcal/mol)显著低于 d-Ala-OEt(30 kcal/mol)。进一步的模拟表明,影响 d-氨基酸聚合的主要因素是 d-酰基中间物酶的构型,特别是其甲基的取向,它阻碍了其他单体的亲核攻击,从而阻碍了多肽的形成。