Suppr超能文献

蛋白酶催化的L-天冬氨酸寡聚化:底物选择性与计算建模

Protease-Catalyzed l-Aspartate Oligomerization: Substrate Selectivity and Computational Modeling.

作者信息

Yang Fan, Totsingan Filbert, Dolan Elliott, Khare Sagar D, Gross Richard A

机构信息

Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States.

Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States.

出版信息

ACS Omega. 2020 Feb 25;5(9):4403-4414. doi: 10.1021/acsomega.9b03290. eCollection 2020 Mar 10.

Abstract

Poly(aspartic acid) (PAA) is a biodegradable water-soluble anionic polymer that can potentially replace poly(acrylic acid) for industrial applications and has shown promise for regenerative medicine and drug delivery. This paper describes an efficient and sustainable route that uses protease catalysis to convert l-aspartate diethyl ester (Et-Asp) to oligo(β-ethyl-α-aspartate), oligo(β-Et-α-Asp). Comparative studies of protease activity for oligo(β-Et-α-Asp) synthesis revealed α-chymotrypsin to be the most efficient. Papain, which is highly active for l-glutamic acid diethyl ester (Et-Glu) oligomerization, is inactive for Et-Asp oligomerization. The assignment of α-linkages between aspartate repeat units formed by α-chymotrypsin catalysis is based on nuclear magnetic resonance (NMR) trifluoacetic acid titration, circular dichroism, and NMR structural analysis. The influence of reaction conditions (pH, temperature, reaction time, and buffer/monomer/α-chymotrypsin concentrations) on oligopeptide yield and average degree of polymerization (DP) was determined. Under preferred reaction conditions (pH 8.5, 40 °C, 0.5 M Et-Asp, 3 mg/mL α-chymotrypsin), Et-Asp oligomerizations reached maximum oligo(β-Et-α-Asp) yields of ∼60% with a DP of ∼12 ( 1762) in just 5 min. Computational modeling using Rosetta software gave relative energies of substrate docking to papain and α-chymotrypsin active sites. The substrate preference calculated by Rosetta modeling of α-chymotrypsin and papain for Et-Asp and Et-Glu oligomerizations, respectively, is consistent with experimental results.

摘要

聚天冬氨酸(PAA)是一种可生物降解的水溶性阴离子聚合物,在工业应用中有望替代聚丙烯酸,并且在再生医学和药物递送方面也显示出前景。本文描述了一种高效且可持续的方法,该方法利用蛋白酶催化将L-天冬氨酸二乙酯(Et-Asp)转化为寡聚(β-乙基-α-天冬氨酸),即寡聚(β-Et-α-Asp)。对用于寡聚(β-Et-α-Asp)合成的蛋白酶活性的比较研究表明,α-胰凝乳蛋白酶是最有效的。对L-谷氨酸二乙酯(Et-Glu)寡聚化具有高活性的木瓜蛋白酶,对Et-Asp寡聚化无活性。由α-胰凝乳蛋白酶催化形成的天冬氨酸重复单元之间α-键的归属基于核磁共振(NMR)三氟乙酸滴定、圆二色性和NMR结构分析。确定了反应条件(pH、温度、反应时间以及缓冲液/单体/α-胰凝乳蛋白酶浓度)对寡肽产率和平均聚合度(DP)的影响。在优选的反应条件下(pH 8.5、温度40°C、0.5 M Et-Asp、3 mg/mL α-胰凝乳蛋白酶),Et-Asp寡聚反应在短短5分钟内即可达到约60%的最大寡聚(β-Et-α-Asp)产率,DP约为12( 1762)。使用Rosetta软件进行的计算建模给出了底物对接至木瓜蛋白酶和α-胰凝乳蛋白酶活性位点的相对能量。分别通过Rosetta建模计算得到的α-胰凝乳蛋白酶和木瓜蛋白酶对Et-Asp和Et-Glu寡聚化的底物偏好与实验结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b3/7066554/f90c3f3b0e2c/ao9b03290_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验