Suppr超能文献

比较转录组分析揭示了赋予旱生盐生植物耐盐性的独特遗传适应性。

Comparative transcriptome analysis reveals unique genetic adaptations conferring salt tolerance in a xerohalophyte.

机构信息

State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China.

State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; and Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.

出版信息

Funct Plant Biol. 2019 Jun;46(7):670-683. doi: 10.1071/FP18295.

Abstract

Most studies on salt tolerance in plants have been conducted using glycophytes like Arabidopsis thaliana (L.) Heynh., with limited resistance to salinity. The xerohalophyte Zygophyllum xanthoxylum (Bunge) Engl. is a salt-accumulating desert plant that efficiently transports Na+ into vacuoles to manage salt and exhibits increased growth under salinity conditions, suggesting a unique transcriptional response compared with glycophytes. We used transcriptome profiling by RNA-seq to compare gene expression in roots of Z. xanthoxylum and A. thaliana under 50 mM NaCl treatments. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis suggested that 50 mM NaCl was perceived as a stimulus for Z. xanthoxylum whereas a stress for A. thaliana. Exposure to 50 mM NaCl caused metabolic shifts towards gluconeogenesis to stimulate growth of Z. xanthoxylum, but triggered defensive systems in A. thaliana. Compared with A. thaliana, a vast array of ion transporter genes was induced in Z. xanthoxylum, revealing an active strategy to uptake Na+ and nutrients from the environment. An ascorbate-glutathione scavenging system for reactive oxygen species was also crucial in Z. xanthoxylum, based on high expression of key enzyme genes. Finally, key regulatory genes for the biosynthesis pathways of abscisic acid and gibberellin showed distinct expression patterns between the two species and auxin response genes were more active in Z. xanthoxylum compared with A. thaliana. Our results provide an important framework for understanding unique patterns of gene expression conferring salt resistance in Z. xanthoxylum.

摘要

大多数关于植物耐盐性的研究都是在拟南芥(Arabidopsis thaliana (L.) Heynh.)等盐生植物上进行的,它们对盐度的抵抗力有限。盐生植物霸王(Zygophyllum xanthoxylum (Bunge) Engl.)是一种能够将 Na+高效运输到液泡中以应对盐分的积累型沙漠植物,在盐胁迫条件下表现出生长增加,这表明其与盐生植物相比具有独特的转录响应。我们使用 RNA-seq 转录组分析比较了 Z. xanthoxylum 和 A. thaliana 在 50mM NaCl 处理下根系的基因表达。基因本体(GO)功能注释和京都基因与基因组百科全书(KEGG)代谢途径分析表明,50mM NaCl 被认为是 Z. xanthoxylum 的刺激物,而对 A. thaliana 则是一种胁迫。暴露于 50mM NaCl 会导致代谢向糖异生转变,以刺激 Z. xanthoxylum 的生长,但会触发 A. thaliana 的防御系统。与 A. thaliana 相比,Z. xanthoxylum 中诱导了大量的离子转运基因,揭示了一种从环境中吸收 Na+和营养物质的积极策略。基于关键酶基因的高表达,抗坏血酸-谷胱甘肽清除系统对于活性氧也至关重要。最后,赤霉素和脱落酸生物合成途径的关键调控基因在这两个物种之间表现出不同的表达模式,而生长素响应基因在 Z. xanthoxylum 中的活性高于 A. thaliana。我们的研究结果为理解霸王赋予其耐盐性的独特基因表达模式提供了重要框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验