Suppr超能文献

用757纳米激发光对视网膜色素上皮细胞进行近红外自发荧光成像。

near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation.

作者信息

Grieve Kate, Gofas-Salas Elena, Ferguson R Daniel, Sahel José Alain, Paques Michel, Rossi Ethan A

机构信息

Vision Institute and Quinze Vingts National Ophthalmology Hospital, PARIS group, 28 rue de Charenton, 75712, Paris, France.

DOTA, ONERA, Université Paris Saclay F-91123 Palaisea, France.

出版信息

Biomed Opt Express. 2018 Nov 5;9(12):5946-5961. doi: 10.1364/BOE.9.005946. eCollection 2018 Dec 1.

Abstract

We demonstrate near-infrared autofluorescence (NIRAF) imaging of retinal pigment epithelial (RPE) cells in healthy volunteers and patients using a 757 nm excitation source in adaptive optics scanning laser ophthalmoscopy (AOSLO). NIRAF excited at 757 nm and collected in an emission band from 778 to 810 nm produced a robust NIRAF signal, presumably arising from melanin, and revealed the typical hexagonal mosaic of RPE cells at most eccentricities imaged within the macula of normal eyes. Several patterns of altered NIRAF structure were seen in patients, including disruption of the NIRAF over a drusen, diffuse hyper NIRAF signal with loss of individual cell delineation in a case of non-neovascular age-related macular degeneration (AMD), and increased visibility of the RPE mosaic under an area showing loss of photoreceptors. In some participants, a superposed cone mosaic was clearly visible in the fluorescence channel at eccentricities between 2 and 6° from the fovea. This was reproducible in these participants and existed despite the use of emission filters with an optical attenuation density of 12 at the excitation wavelength, minimizing the possibility that this was due to bleed through of the excitation light. This cone signal may be a consequence of cone waveguiding on either the ingoing excitation light and/or the outgoing NIRAF emitted by fluorophores within the RPE and/or choroid and warrants further investigation. NIRAF imaging at 757 nm offers efficient signal excitation and detection, revealing structural alterations in retinal disease with good contrast and shows promise as a tool for monitoring future therapies at the level of single RPE cells.

摘要

我们使用自适应光学扫描激光眼科显微镜(AOSLO)中的757 nm激发源,对健康志愿者和患者的视网膜色素上皮(RPE)细胞进行了近红外自发荧光(NIRAF)成像。在757 nm激发并在778至810 nm发射带中收集的NIRAF产生了强大的NIRAF信号,推测该信号源自黑色素,并揭示了正常眼睛黄斑区内大多数成像偏心度下RPE细胞典型的六边形镶嵌结构。在患者中观察到几种NIRAF结构改变的模式,包括在玻璃膜疣上方NIRAF中断、在非新生血管性年龄相关性黄斑变性(AMD)病例中弥漫性高NIRAF信号且单个细胞轮廓消失以及在显示光感受器缺失的区域下RPE镶嵌结构的可见性增加。在一些参与者中,在距中央凹2至6°的偏心度处,荧光通道中清晰可见叠加的视锥细胞镶嵌结构。这在这些参与者中是可重复的,并且尽管使用了在激发波长处光学衰减密度为12的发射滤光片,该结构仍然存在,从而将其归因于激发光渗漏的可能性降至最低。这种视锥细胞信号可能是视锥细胞对入射激发光和/或RPE和/或脉络膜内荧光团发射的出射NIRAF进行波导的结果,值得进一步研究。757 nm的NIRAF成像提供了高效的信号激发和检测,以良好的对比度揭示视网膜疾病中的结构改变,并有望作为一种在单个RPE细胞水平监测未来疗法的工具。

相似文献

1
near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation.
Biomed Opt Express. 2018 Nov 5;9(12):5946-5961. doi: 10.1364/BOE.9.005946. eCollection 2018 Dec 1.
2
Comparison between Two Adaptive Optics Methods for Imaging of Individual Retinal Pigmented Epithelial Cells.
Diagnostics (Basel). 2024 Apr 4;14(7):768. doi: 10.3390/diagnostics14070768.
3
Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation.
Eye (Lond). 2022 Oct;36(10):1878-1883. doi: 10.1038/s41433-021-01754-0. Epub 2021 Aug 30.
5
Human Retinal Pigment Epithelium: In Vivo Cell Morphometry, Multispectral Autofluorescence, and Relationship to Cone Mosaic.
Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):5705-5716. doi: 10.1167/iovs.18-24677.
6
In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic.
Invest Ophthalmol Vis Sci. 2009 Mar;50(3):1350-9. doi: 10.1167/iovs.08-2618. Epub 2008 Oct 24.
8
Multimodal Imaging of Torpedo Maculopathy With Fluorescence Adaptive Optics Imaging of Individual Retinal Pigmented Epithelial Cells.
Front Med (Lausanne). 2021 Dec 9;8:769308. doi: 10.3389/fmed.2021.769308. eCollection 2021.
9
Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration.
J Clin Med. 2014;3(4):1302-21. doi: 10.3390/jcm3041302.
10
Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics.
Biomed Opt Express. 2017 Sep 7;8(10):4348-4360. doi: 10.1364/BOE.8.004348. eCollection 2017 Oct 1.

引用本文的文献

1
structured illumination ophthalmoscopy demonstration on the human retina using adaptive optics.
Biomed Opt Express. 2025 Jun 24;16(7):2923-2944. doi: 10.1364/BOE.559670. eCollection 2025 Jul 1.
9
Comparison between Two Adaptive Optics Methods for Imaging of Individual Retinal Pigmented Epithelial Cells.
Diagnostics (Basel). 2024 Apr 4;14(7):768. doi: 10.3390/diagnostics14070768.
10
Substrip-based registration and automatic montaging of adaptive optics retinal images.
Biomed Opt Express. 2024 Jan 31;15(2):1311-1330. doi: 10.1364/BOE.514447. eCollection 2024 Feb 1.

本文引用的文献

1
Human Retinal Pigment Epithelium: In Vivo Cell Morphometry, Multispectral Autofluorescence, and Relationship to Cone Mosaic.
Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):5705-5716. doi: 10.1167/iovs.18-24677.
2
Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases.
Prog Retin Eye Res. 2018 Sep;66:1-16. doi: 10.1016/j.preteyeres.2018.07.001. Epub 2018 Jul 17.
3
Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics.
Biomed Opt Express. 2017 Sep 7;8(10):4348-4360. doi: 10.1364/BOE.8.004348. eCollection 2017 Oct 1.
6
3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT533-43. doi: 10.1167/iovs.16-19106.
8
Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration.
J Clin Med. 2014;3(4):1302-21. doi: 10.3390/jcm3041302.
9
Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.
Biomed Opt Express. 2014 Aug 26;5(9):3174-91. doi: 10.1364/BOE.5.003174. eCollection 2014 Sep 1.
10
Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure.
Invest Ophthalmol Vis Sci. 2014 May 20;55(6):3929-38. doi: 10.1167/iovs.13-12562.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验