Yang Qiang, Zhang Jie, Nozato Koji, Saito Kenichi, Williams David R, Roorda Austin, Rossi Ethan A
Center for Visual Science, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
Healthcare Solution Division, Business Imaging Solution Group, Canon U.S.A., Inc., Melville, NY 11747, USA.
Biomed Opt Express. 2014 Aug 26;5(9):3174-91. doi: 10.1364/BOE.5.003174. eCollection 2014 Sep 1.
Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.
眼球运动是使用自适应光学(AO)扫描激光检眼镜(AOSLO)高效获取高分辨率视网膜图像的主要障碍。在此,我们通过在AOSLO中同时实施光学稳定和数字图像配准来展示该问题的解决方案。我们用双轴倾斜镜替换了慢速扫描镜,以实现慢速扫描和光学稳定的双重功能。闭环光学稳定将与眼球运动相关的图像运动幅度降低了10到15倍。仅光学稳定后的残余均方根误差约为中央凹视锥细胞大小:对于正常观察者,典型注视眼动时约为1.66 - 2.56μm或约0.34 - 0.53角分。通过实时数字图像配准的完整实施方案,校正了光学稳定后的残余眼球运动,均方根精度约为0.20 - 0.25μm或约0.04 - 0.05角分,据我们所知,这比之前报道的任何方法都更精确。