Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany.
DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
Stat Med. 2019 Jul 30;38(17):3105-3122. doi: 10.1002/sim.8154. Epub 2019 May 7.
Adaptive enrichment designs offer an efficient and flexible way to demonstrate the efficacy of a treatment in a clinically defined full population or in, eg, biomarker-defined subpopulations while controlling the family-wise Type I error rate in the strong sense. Frequently used testing strategies in designs with two or more stages include the combination test and the conditional error function approach. Here, we focus on the latter and present some extensions. In contrast to previous work, we allow for multiple subgroups rather than one subgroup only. For nested as well as nonoverlapping subgroups with normally distributed endpoints, we explore the effect of estimating the variances in the subpopulations. Instead of using a normal approximation, we derive new t-distribution-based methods for two different scenarios. First, in the case of equal variances across the subpopulations, we present exact results using a multivariate t-distribution. Second, in the case of potentially varying variances across subgroups, we provide some improved approximations compared to the normal approximation. The performance of the proposed conditional error function approaches is assessed and compared to the combination test in a simulation study. The proposed methods are motivated by an example in pulmonary arterial hypertension.
适应性富集设计提供了一种高效、灵活的方法,可在临床定义的全人群中或在生物标志物定义的亚人群中(例如)控制治疗效果,同时控制强意义上的总体Ⅰ型错误率。在具有两个或更多阶段的设计中,常用的检验策略包括联合检验和条件误函数方法。在这里,我们重点介绍后者并进行一些扩展。与之前的工作不同,我们允许有多个亚组,而不仅仅是一个亚组。对于具有正态分布终点的嵌套和非重叠亚组,我们探讨了估计亚组间方差的效果。我们没有使用正态逼近,而是针对两种不同情况推导出新的基于 t 分布的方法。首先,在亚组间方差相等的情况下,我们使用多元 t 分布给出了精确结果。其次,在亚组间方差可能不同的情况下,与正态逼近相比,我们提供了一些改进的近似值。在模拟研究中评估并比较了所提出的条件误函数方法的性能与联合检验。所提出的方法源于肺动脉高压的一个例子。