Zheng Shuang, Huang Chengxi, Yu Tong, Xu Meiling, Zhang Shoutao, Xu Haiyang, Liu Yichun, Kan Erjun, Wang Yanchao, Yang Guochun
Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education , Northeast Normal University , Changchun 130024 , China.
Department of Applied Physics and Institution of Energy and Microstructure , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , P. R. China.
J Phys Chem Lett. 2019 Jun 6;10(11):2733-2738. doi: 10.1021/acs.jpclett.9b00970. Epub 2019 May 13.
For the development of high-performance spintronic nanodevices, one of the most urgent and challenging tasks is the preparation of two-dimensional materials with room-temperature ferromagnetism and a large magnetic anisotropic energy (MAE). Through first-principles swarm-intelligence structural search calculations, we identify an ideal ferromagnetic FeP monolayer, in which Fe atoms show a perfect Kagome lattice, leading to strong in-plane Fe-Fe coupling. The predicted Curie temperature of FeP reaches ∼420 K, and its MAE is comparable to those of ferromagnetic materials, such as Fe and FeSi. Moreover, the FeP monolayer remains as an above room-temperature ferromagnet under biaxial strains as large as 10%. Its lattice can be retained at temperatures of ≤1000 K, exhibiting a high thermodynamic stability. All of these desirable properties make the FeP monolayer a promising candidate for applications in spintronic nanodevices.
对于高性能自旋电子纳米器件的发展而言,最紧迫且具挑战性的任务之一是制备具有室温铁磁性和大磁各向异性能(MAE)的二维材料。通过第一性原理群智能结构搜索计算,我们确定了一种理想的铁磁FeP单层,其中Fe原子呈现出完美的 Kagome 晶格,导致面内Fe-Fe耦合很强。预测的FeP居里温度达到约420 K,其MAE与铁磁材料(如Fe和FeSi)相当。此外,在高达10%的双轴应变下,FeP单层仍为高于室温的铁磁体。其晶格在温度≤1000 K时可保持,表现出高的热稳定性。所有这些理想特性使FeP单层成为自旋电子纳米器件应用的有前景候选材料。