Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
Data Science Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK.
Int J Mol Sci. 2019 May 7;20(9):2245. doi: 10.3390/ijms20092245.
We review the contribution of bioimaging in building a coherent understanding of Ca 2 + signalling during legume-bacteria symbiosis. Currently, two different calcium signals are believed to control key steps of the symbiosis: a Ca 2 + gradient at the tip of the legume root hair is involved in the development of an infection thread, while nuclear Ca 2 + oscillations, the hallmark signal of this symbiosis, control the formation of the root nodule, where bacteria fix nitrogen. Additionally, different Ca 2 + spiking signatures have been associated with specific infection stages. Bioimaging is intrinsically a cross-disciplinary area that requires integration of image recording, processing and analysis. We used experimental examples to critically evaluate previously-established conclusions and draw attention to challenges caused by the varying nature of the signal-to-noise ratio in live imaging. We hypothesise that nuclear Ca 2 + spiking is a wide-range signal involving the entire root hair and that the Ca 2 + signature may be related to cytoplasmic streaming.
我们回顾了生物成像在建立对豆科植物-细菌共生过程中 Ca 2 +信号传递的连贯理解方面的贡献。目前,人们认为有两种不同的钙信号控制着共生的关键步骤:豆科植物根毛尖端的 Ca 2 +梯度参与感染线的发育,而核 Ca 2 +振荡,作为这种共生的标志信号,控制着根瘤的形成,细菌在根瘤中固定氮。此外,不同的 Ca 2 +尖峰特征与特定的感染阶段有关。生物成像本质上是一个跨学科领域,需要图像记录、处理和分析的整合。我们使用实验示例来批判性地评估以前建立的结论,并提请注意由于活体成像中信号与噪声比的变化性质而带来的挑战。我们假设核 Ca 2 +尖峰是一种涉及整个根毛的广谱信号,并且 Ca 2 +特征可能与细胞质流有关。