Suppr超能文献

弧岩浆特征的起源:俯冲带中微量元素(再)迁移的温度依赖性过程。

Origin of arc magmatic signature: A temperature-dependent process for trace element (re)-mobilization in subduction zones.

作者信息

Gamal El Dien Hamed, Li Zheng-Xiang, Kil Youngwoo, Abu-Alam Tamer

机构信息

Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR) and ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

Geology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt.

出版信息

Sci Rep. 2019 May 8;9(1):7098. doi: 10.1038/s41598-019-43605-9.

Abstract

Serpentinite is a major carrier of fluid-mobile elements in subduction zones, which influences the geochemical signature of arc magmatism (e.g. high abundances of Li, Ba, Sr, B, As, Mo and Pb). Based on results from Neoproterozoic serpentinites in the Arabian-Nubian Shield, we herein report the role of antigorite in the transportation of fluid-mobile elements (FME) and light rare earth elements (LREE) from the subducted slab to arc-related magma during subduction. The serpentinites contain two generations of antigorites: the older generation is coarse-grained, formed at a temperature range of 165-250 °C and is enriched in Li, Rb, Ba and Cs, whereas the younger generation is finer-grained, formed at higher temperature conditions (425-475 °C) and has high concentrations of B, As, Sb, Mo, Pb, Sr and LREE. Magnesite, on the other hand, remains stable at sub-arc depths beyond the stability field of both antigorites, and represents a potential reservoir of FME and LREE for deeper mantle melts. Magnesite has high FME and LREE absorbing capacity (over 50-60%) higher than serpentine phases. Temperature is the main controlling factor for stability of these minerals and therefore the release of these elements from subducted slabs into arc magmatism. As the liberation of these elements varies along the length of the slab, the resulting cross-arc geochemical variation trend can help to determine the subduction polarity of ancient arcs.

摘要

蛇纹岩是俯冲带中流体活动元素的主要载体,它影响着弧岩浆作用的地球化学特征(例如锂、钡、锶、硼、砷、钼和铅的高丰度)。基于阿拉伯-努比亚盾新元古代蛇纹岩的研究结果,我们在此报告了叶蛇纹石在俯冲过程中从俯冲板块向与弧相关的岩浆输送流体活动元素(FME)和轻稀土元素(LREE)的作用。这些蛇纹岩包含两代叶蛇纹石:较老的一代为粗粒状,形成于165 - 250°C的温度范围内,富含锂、铷、钡和铯;而较年轻的一代为细粒状,形成于较高温度条件下(425 - 475°C),含有高浓度的硼、砷、锑、钼、铅、锶和轻稀土元素。另一方面,菱镁矿在弧下深度处,在两代叶蛇纹石的稳定域之外保持稳定,并且是深部地幔熔体中流体活动元素和轻稀土元素的潜在储存库。菱镁矿具有比蛇纹石相更高的流体活动元素和轻稀土元素吸收能力(超过50 - 60%)。温度是这些矿物稳定性以及因此这些元素从俯冲板块释放到弧岩浆作用中的主要控制因素。由于这些元素的释放沿板块长度变化不同,由此产生的跨弧地球化学变化趋势有助于确定古代弧的俯冲极性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5015/6506526/92ab9b4bcdac/41598_2019_43605_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验