Suppr超能文献

基于非负矩阵分解算法的非接触式心率检测中的盲源分离。

Blind Source Separation on Non-Contact Heartbeat Detection by Non-Negative Matrix Factorization Algorithms.

出版信息

IEEE Trans Biomed Eng. 2020 Feb;67(2):482-494. doi: 10.1109/TBME.2019.2915762. Epub 2019 May 9.

Abstract

In non-contact heart rate (HR) monitoring via Doppler radar, the disturbance from respiration and/or body motion is treated as a key problem on the estimation of HR. This paper proposes a blind source separation (BSS) approach to mitigate the noise effect in the received radar signal, and incorporates the sparse spectrum reconstruction to achieve a high-resolution of heartbeat spectrum. The proposed BSS decomposes the spectrogram of mixture signal into original sources, including heartbeat, using non-negative matrix factorization (NMF) algorithms, through learning the complete basis spectra (BS) by a hierarchical clustering. In particular, to exploit the temporal sparsity of heartbeat component, two variants of NMF algorithms with sparseness constraints are applied as well, namely sparse NMF and weighted sparse NMF. Compared with usual BSS, our proposed BSS has three advantages: 1) clustering-induced unsupervised manner; 2) compact demixing architecture; and 3) merely requiring single-channel input data. In addition, the HR estimation method using our proposal delivers more satisfactory precision and robustness over other existing methods, which is demonstrated through the measurements of distinguishing people's activities, gaining both smallest absolute errors of HR estimation for sitting still and typewriting.

摘要

在基于多普勒雷达的非接触心率监测中,呼吸和/或身体运动的干扰被视为估计心率的关键问题。本文提出了一种盲源分离(BSS)方法来减轻接收雷达信号中的噪声影响,并结合稀疏谱重建实现了心率谱的高分辨率。所提出的 BSS 通过分层聚类学习完整的基谱(BS),使用非负矩阵分解(NMF)算法将混合信号的频谱分解为原始源,包括心跳。特别是,为了利用心跳分量的时间稀疏性,还应用了两种具有稀疏约束的 NMF 算法变体,即稀疏 NMF 和加权稀疏 NMF。与通常的 BSS 相比,我们提出的 BSS 具有三个优点:1)聚类诱导的无监督方式;2)紧凑的解混结构;3)仅需要单通道输入数据。此外,通过区分人们的活动进行测量,我们提出的 HR 估计方法在其他现有方法的基础上提高了精度和鲁棒性,在静止和打字时的 HR 估计的最小绝对误差最小方面都得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验