Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France.
CEA, LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
Phys Rev Lett. 2019 Apr 26;122(16):168101. doi: 10.1103/PhysRevLett.122.168101.
The structural and functional organization of biological tissues relies on the intricate interplay between chemical and mechanical signaling. Whereas the role of constant and transient mechanical perturbations is generally accepted, several studies recently highlighted the existence of long-range mechanical excitations (i.e., waves) at the supracellular level. Here, we confine epithelial cell monolayers to quasi-one-dimensional geometries, to force the establishment of tissue-level waves of well-defined wavelength and period. Numerical simulations based on a self-propelled Voronoi model reproduce the observed waves and exhibit a phase transition between a global and a multinodal wave, controlled by the confinement size. We confirm experimentally the existence of such a phase transition, and show that wavelength and period are independent of the confinement length. Together, these results demonstrate the intrinsic origin of tissue oscillations, which could provide cells with a mechanism to accurately measure distances at the supracellular level.
生物组织的结构和功能组织依赖于化学和机械信号之间的复杂相互作用。虽然恒定和瞬态机械扰动的作用已被普遍接受,但最近有几项研究强调了在超细胞水平存在长程机械激发(即波)。在这里,我们将上皮细胞单层限制在准一维几何形状中,以迫使组织水平的波具有明确波长和周期的建立。基于自主推进 Voronoi 模型的数值模拟再现了观察到的波,并表现出由约束尺寸控制的全局波和多节点波之间的相变。我们通过实验证实了这种相变的存在,并表明波长和周期与约束长度无关。总之,这些结果证明了组织振荡的内在起源,这可能为细胞提供了一种在超细胞水平上准确测量距离的机制。