Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan.
Sci Rep. 2019 May 10;9(1):7246. doi: 10.1038/s41598-019-43558-z.
Motor variability is inevitable in human body movements and has been addressed from various perspectives in motor neuroscience and biomechanics: it may originate from variability in neural activities, or it may reflect a large number of degrees of freedom inherent in our body movements. How to evaluate motor variability is thus a fundamental question. Previous methods have quantified (at least) two striking features of motor variability: smaller variability in the task-relevant dimension than in the task-irrelevant dimension and a low-dimensional structure often referred to as synergy or principal components. However, the previous methods cannot be used to quantify these features simultaneously and are applicable only under certain limited conditions (e.g., one method does not consider how the motion changes over time, and another does not consider how each motion is relevant to performance). Here, we propose a flexible and straightforward machine learning technique for quantifying task-relevant variability, task-irrelevant variability, and the relevance of each principal component to task performance while considering how the motion changes over time and its relevance to task performance in a data-driven manner. Our method reveals the following novel property: in motor adaptation, the modulation of these different aspects of motor variability differs depending on the perturbation schedule.
运动变异性在人体运动中是不可避免的,在运动神经科学和生物力学中已经从不同的角度进行了研究:它可能源于神经活动的变异性,也可能反映了我们身体运动中固有的大量自由度。因此,如何评估运动变异性是一个基本问题。先前的方法已经量化了(至少)运动变异性的两个显著特征:与任务无关的维度相比,任务相关的维度的变异性更小,以及通常被称为协同作用或主要成分的低维结构。然而,先前的方法不能同时用于量化这些特征,并且仅在某些有限的条件下适用(例如,一种方法不考虑运动随时间的变化,另一种方法不考虑每个运动与性能的相关性)。在这里,我们提出了一种灵活且直接的机器学习技术,用于量化任务相关的变异性、任务无关的变异性以及每个主要成分与任务性能的相关性,同时考虑运动随时间的变化及其与任务性能的相关性。我们的方法揭示了以下新的特性:在运动适应中,这些不同方面的运动变异性的调制取决于扰动计划。