Suppr超能文献

以数据驱动的方式将随时间变化的运动分解为与任务相关和与任务不相关的成分:在全身运动中的运动适应中的应用。

Decomposing motion that changes over time into task-relevant and task-irrelevant components in a data-driven manner: application to motor adaptation in whole-body movements.

机构信息

Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan.

出版信息

Sci Rep. 2019 May 10;9(1):7246. doi: 10.1038/s41598-019-43558-z.

Abstract

Motor variability is inevitable in human body movements and has been addressed from various perspectives in motor neuroscience and biomechanics: it may originate from variability in neural activities, or it may reflect a large number of degrees of freedom inherent in our body movements. How to evaluate motor variability is thus a fundamental question. Previous methods have quantified (at least) two striking features of motor variability: smaller variability in the task-relevant dimension than in the task-irrelevant dimension and a low-dimensional structure often referred to as synergy or principal components. However, the previous methods cannot be used to quantify these features simultaneously and are applicable only under certain limited conditions (e.g., one method does not consider how the motion changes over time, and another does not consider how each motion is relevant to performance). Here, we propose a flexible and straightforward machine learning technique for quantifying task-relevant variability, task-irrelevant variability, and the relevance of each principal component to task performance while considering how the motion changes over time and its relevance to task performance in a data-driven manner. Our method reveals the following novel property: in motor adaptation, the modulation of these different aspects of motor variability differs depending on the perturbation schedule.

摘要

运动变异性在人体运动中是不可避免的,在运动神经科学和生物力学中已经从不同的角度进行了研究:它可能源于神经活动的变异性,也可能反映了我们身体运动中固有的大量自由度。因此,如何评估运动变异性是一个基本问题。先前的方法已经量化了(至少)运动变异性的两个显著特征:与任务无关的维度相比,任务相关的维度的变异性更小,以及通常被称为协同作用或主要成分的低维结构。然而,先前的方法不能同时用于量化这些特征,并且仅在某些有限的条件下适用(例如,一种方法不考虑运动随时间的变化,另一种方法不考虑每个运动与性能的相关性)。在这里,我们提出了一种灵活且直接的机器学习技术,用于量化任务相关的变异性、任务无关的变异性以及每个主要成分与任务性能的相关性,同时考虑运动随时间的变化及其与任务性能的相关性。我们的方法揭示了以下新的特性:在运动适应中,这些不同方面的运动变异性的调制取决于扰动计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6054/6510796/60da07ea964a/41598_2019_43558_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验