Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary.
School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
Math Biosci. 2019 Jul;313:33-40. doi: 10.1016/j.mbs.2019.04.009. Epub 2019 May 8.
Rooted phylogenetic networks provide an explicit representation of the evolutionary history of a set X of sampled species. In contrast to phylogenetic trees which show only speciation events, networks can also accommodate reticulate processes (for example, hybrid evolution, endosymbiosis, and lateral gene transfer). A major goal in systematic biology is to infer evolutionary relationships, and while phylogenetic trees can be uniquely determined from various simple combinatorial data on X, for networks the reconstruction question is much more subtle. Here we ask when can a network be uniquely reconstructed from its 'ancestral profile' (the number of paths from each ancestral vertex to each element in X). We show that reconstruction holds (even within the class of all networks) for a class of networks we call 'orchard networks', and we provide a polynomial-time algorithm for reconstructing any orchard network from its ancestral profile. Our approach relies on establishing a structural theorem for orchard networks, which also provides for a fast (polynomial-time) algorithm to test if any given network is of orchard type. Since the class of orchard networks includes tree-sibling tree-consistent networks and tree-child networks, our result generalise reconstruction results from 2008 and 2009. Orchard networks allow for an unbounded number k of reticulation vertices, in contrast to tree-sibling tree-consistent networks and tree-child networks for which k is at most 2|X|-4 and |X|-1, respectively.
有根系统发育网络为一组采样物种 X 的进化历史提供了明确的表示。与仅显示物种形成事件的系统发育树不同,网络还可以容纳网状过程(例如,杂交进化、内共生和横向基因转移)。系统生物学的主要目标是推断进化关系,虽然可以从 X 上的各种简单组合数据唯一确定系统发育树,但对于网络,重建问题要微妙得多。在这里,我们询问从网络的“祖先轮廓”(从每个祖先顶点到 X 中每个元素的路径数)是否可以唯一重建网络。我们表明,在我们称之为“果园网络”的一类网络中可以进行重建,并且我们提供了一种从其祖先轮廓重建任何果园网络的多项式时间算法。我们的方法依赖于为果园网络建立一个结构定理,该定理还提供了一种快速(多项式时间)算法来测试任何给定的网络是否属于果园类型。由于果园网络包括树兄弟树一致网络和树子网络,因此我们的结果概括了 2008 年和 2009 年的重建结果。果园网络允许有无限数量的网状顶点 k,而树兄弟树一致网络和树子网络的 k 分别最多为 2|X|-4 和 |X|-1。