From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.
From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
J Biol Chem. 2019 Jun 14;294(24):9326-9341. doi: 10.1074/jbc.REV119.006860. Epub 2019 May 12.
Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch. We relate this work to recent progress that pinpoints specific determinants of TAR recognition by: (i) viral Tat proteins, (ii) an innovative lab-evolved TAR-binding protein, and (iii) an ultrahigh-affinity cyclic peptide. New structural details are used to model the TAR-Tat-super-elongation complex (SEC) that is essential for efficient viral transcription and represents a focal point for antiviral drug design. A key prediction is that the Tat transactivation domain makes modest contacts with the TAR apical loop, whereas its arginine-rich motif spans the entire length of the TAR major groove. This expansive interface has significant implications for drug discovery and design, and it further suggests that future lab-evolved proteins could be deployed to discover steric restriction points that block Tat-mediated recruitment of the host SEC to HIV-1 TAR.
能够强有力且选择性地结合 RNA 的小分子和短肽十分罕见,这使得这些复合物的分子结构非常特殊。因此,最近的几项研究为人们了解肽和蛋白质如何识别 HIV-1 转录激活反应 (TAR) 元件提供了前所未有的结构见解。TAR 是病毒转录本 5' 长末端重复区中一段 59 个核苷酸长的非编码 RNA 片段。在这里,我们通过描述小分子与 TAR 结合的早期进展,并通过与最近在鉴定靶向丙型肝炎病毒内部核糖体进入位点 (IRES) 和黄素单核苷酸核糖开关的化合物方面取得的成功进行类比,提供了对这些进展的综合看法。我们将这项工作与最近的进展联系起来,这些进展确定了 TAR 识别的特定决定因素:(i) 病毒 Tat 蛋白,(ii) 一种创新的实验室进化 TAR 结合蛋白,和 (iii) 一种超高亲和力的环状肽。新的结构细节用于构建 TAR-Tat-超长延伸复合物 (SEC) 的模型,该复合物对于有效的病毒转录至关重要,是抗病毒药物设计的重点。一个关键的预测是,Tat 转录激活结构域与 TAR 顶端环有适度的接触,而其富含精氨酸的结构域则跨越 TAR 主沟的全长。这种扩展的界面对药物发现和设计具有重要意义,进一步表明未来的实验室进化蛋白可以用于发现阻止 Tat 介导的宿主 SEC 募集到 HIV-1 TAR 的空间限制点。