Wang Jie, Wu Yan-Fang, Kurmoo Mohamedally, Zeng Ming-Hua
Department of Chemistry and Pharmaceutical Sciences , Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guilin , 541004 , P. R. China.
Institut de Chimie de Strasbourg, CNRS-UMR7177 , Université de Strasbourg , 67070 Strasbourg Cedex , France.
Inorg Chem. 2019 Jun 3;58(11):7472-7479. doi: 10.1021/acs.inorgchem.9b00666. Epub 2019 May 13.
A way to understand kinetics and explore mechanism of reactions is to identify the intermediates and their relative energetics. In this respect, low-energy electrospray ionization mass spectrometry is providing information on possible intermediates that can be tandemly verified using crystallography of the products. This has been extended to the study of the formation of functional clusters of transition metals under varying conditions. The reaction of NiL (L = 2-ethoxy-6-( N-methyliminomethyl)phenolate) with M(HO)(ClO) in the presence of EtN base leads to [Ni M(μ-OH)L] according to NiL → [ML] → [M(OH)L] → [M(OH)L]. In contrast, its reaction with M(HO)(NO) in the absence of base leads to two crystallographic structural types [ML(NO)(HO)]·CHCN for M = Ni (I-Ni) or Co (I-Co Ni, x = 0-3) and [MNiL(NO)] for M = Zn (II-ZnNi) or Co (II-CoNi). Interestingly, ESI-MS suggests three slightly different formation processes: for I-Ni, {NiL → [NiL(NO)] → [NiL(NO)] → [NiL] → [NiL(NO)]}; for II-ZnNi, {NiL → [ZnNiL(NO)] → [ZnNiL(NO)]}; for II-CoNi and I-Co Ni, {NiL → [ML(NO)] → [ML] → [ML(NO)]}. Magnetization measurements reveal the site of each metal ionin II-ZnNi and the number of single electrons within different clusters. Without the base, there is an interplay between the weak coordinating nitrate and water stabilizing the two structural types via the different formation processes. The results indicate that not only the strength of the ligand matters but also the ionic sizes and possibly softness of the metals may be implicated.
理解反应动力学和探索反应机理的一种方法是确定中间体及其相对能量。在这方面,低能量电喷雾电离质谱法正在提供有关可能中间体的信息,这些信息可以通过产物晶体学进行串联验证。这已扩展到对不同条件下过渡金属功能簇形成的研究。在EtN碱存在下,NiL(L = 2 - 乙氧基 - 6 -(N - 甲基亚氨基甲基)苯酚盐)与M(HO)(ClO)反应生成[Ni M(μ - OH)L],反应过程为NiL → [ML] → [M(OH)L] → [M(OH)L]。相比之下,在无碱条件下它与M(HO)(NO)反应生成两种晶体结构类型:对于M = Ni(I - Ni)或Co(I - Co Ni,x = 0 - 3),产物为[ML(NO)(HO)]·CHCN;对于M = Zn(II - ZnNi)或Co(II - CoNi),产物为[MNiL(NO)]。有趣的是,电喷雾电离质谱法表明了三种略有不同的形成过程:对于I - Ni,{NiL → [NiL(NO)] → [NiL(NO)] → [NiL] → [NiL(NO)]};对于II - ZnNi,{NiL → [ZnNiL(NO)] → [ZnNiL(NO)]};对于II - CoNi和I - Co Ni,{NiL → [ML(NO)] → [ML] → [ML(NO)]}。磁化测量揭示了II - ZnNi中每个金属离子的位置以及不同簇内单电子的数量。在没有碱的情况下,弱配位的硝酸盐和水之间存在相互作用,通过不同的形成过程稳定这两种结构类型。结果表明,不仅配体的强度很重要,金属的离子大小以及可能的软度也可能有影响。