Suppr超能文献

基于自适应超图嵌入字典学习的基因选择在微阵列数据分类中的应用。

Gene selection for microarray data classification via adaptive hypergraph embedded dictionary learning.

机构信息

Wuhan University of Technology Hospital, Wuhan University of Technology, Wuhan 430070, China.

Department of Interventional Radiology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223100, China.

出版信息

Gene. 2019 Jul 20;706:188-200. doi: 10.1016/j.gene.2019.04.060. Epub 2019 May 11.

Abstract

Due to the rapid development of DNA microarray technology, a large number of microarray data come into being and classifying these data has been verified useful for cancer diagnosis, treatment and prevention. However, microarray data classification is still a challenging task since there are often a huge number of genes but a small number of samples in gene expression data. As a result, a computational method for reducing the dimension of microarray data is necessary. In this paper, we introduce a computational gene selection model for microarray data classification via adaptive hypergraph embedded dictionary learning (AHEDL). Specifically, a dictionary is learned from the feature space of original high dimensional microarray data, and this learned dictionary is used to represent original genes with a reconstruction coefficient matrix. Then we use a l-norm regularization to impose the row sparsity on the coefficient matrix for selecting discriminate genes. Meanwhile, in order to capture the localmanifold geometrical structure of original microarray data in a high-order manner, a hypergraph is adaptively learned and embedded into the model. An iterative updating algorithm is designed for solving the optimization problem. In order to validate the efficacy of the proposed model, we have conducted experiments on six publicly available microarray data sets and the results demonstrate that AHEDL outperforms other state-of-the-art methods in terms of microarray data classification. ABBREVIATIONS.

摘要

由于 DNA 微阵列技术的快速发展,大量的微阵列数据应运而生,这些数据的分类已被证明对癌症的诊断、治疗和预防是有用的。然而,由于基因表达数据通常具有大量的基因和少量的样本,因此微阵列数据分类仍然是一项具有挑战性的任务。因此,需要一种用于降低微阵列数据维度的计算方法。在本文中,我们通过自适应超图嵌入字典学习(AHEDL)介绍了一种用于微阵列数据分类的计算基因选择模型。具体来说,从原始高维微阵列数据的特征空间中学习字典,并使用该学习字典通过重构系数矩阵来表示原始基因。然后,我们使用 l-norm 正则化对系数矩阵施加行稀疏性,以选择有区别的基因。同时,为了以高阶方式捕获原始微阵列数据的局部流形几何结构,自适应地学习并嵌入超图。设计了一个迭代更新算法来求解优化问题。为了验证所提出模型的有效性,我们在六个公开可用的微阵列数据集上进行了实验,结果表明,在微阵列数据分类方面,AHEDL 优于其他最先进的方法。缩写词。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验