Paz-Borbón Lauro Oliver, Buendía Fernando, Garzón Ignacio L, Posada-Amarillas Alvaro, Illas Francesc, Li Jun
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 CDMX, Mexico.
Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas & Rosales, 83000 Hermosillo, Sonora, Mexico.
Phys Chem Chem Phys. 2019 Jul 17;21(28):15286-15296. doi: 10.1039/c9cp01772k.
Controlling Ce4+ to Ce3+ electronic reducibility in a rare-earth binary oxide such as CeO2 has enormous applications in heterogeneous catalysis, where a profound understanding of reactivity and selectivity at the atomic level is yet to be reached. Thus, in this work we report an extensive DFT-based Basin Hopping global optimization study to find the most stable bimetallic Pt-Cu clusters supported on the CeO2(111) oxide surface, involving up to 5 atoms in size for all compositions. Our PBE+U global optimization calculations indicate a preference for Pt-Cu clusters to adopt 2D planar geometries parallel to the oxide surface, due to the formation of strong metal bonds to oxygen surface sites and charge transfer effects. The calculated adsorption energy values (Eads) for both mono- and bimetallic systems are of the order of 1.79 up to 4.07 eV, implying a strong metal cluster interaction with the oxide surface. Our calculations indicate that at such sub-nanometer sizes, the number of Ce4+ surface atoms reduced to Ce3+ cations is mediated by the amount of Cu atoms within the cluster, reaching a maximum of three Ce3+ for a supported Cu5 cluster. Our computational results have critical implications on the continuous understanding of the strong metal-support interactions over reducible oxides such as CeO2, as well as the advancement of frontier research areas such as heterogeneous single-atom catalysts (SAC) and single-cluster catalysts (SCC).
在诸如CeO₂这样的稀土二元氧化物中控制Ce⁴⁺到Ce³⁺的电子还原性在多相催化中具有巨大的应用,然而在原子水平上对反应性和选择性的深入理解仍有待实现。因此,在这项工作中,我们报告了一项基于密度泛函理论(DFT)的广泛的盆地跳跃全局优化研究,以找到负载在CeO₂(111)氧化物表面上最稳定的双金属Pt-Cu簇,所有组成的簇尺寸最大为5个原子。我们的PBE+U全局优化计算表明,由于与氧表面位点形成强金属键和电荷转移效应,Pt-Cu簇倾向于采用与氧化物表面平行的二维平面几何结构。单金属和双金属体系的计算吸附能值(Eads)在1.79到4.07 eV之间,这意味着金属簇与氧化物表面有很强的相互作用。我们的计算表明,在这种亚纳米尺寸下,还原为Ce³⁺阳离子的Ce⁴⁺表面原子数量由簇内Cu原子的数量介导,对于负载的Cu₅簇,最多可达到三个Ce³⁺。我们的计算结果对于持续理解诸如CeO₂这样的可还原氧化物上的强金属-载体相互作用以及多相单原子催化剂(SAC)和单簇催化剂(SCC)等前沿研究领域的进展具有关键意义。