Murray C R, Gorshkov A V, Pohl T
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany.
Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD20742, USA.
New J Phys. 2016;18. doi: 10.1088/1367-2630/18/9/092001.
We develop a theoretical framework to characterize the decoherence dynamics due to multi-photon scattering in an all-optical switch based on Rydberg atom induced nonlinearities. By incorporating the knowledge of this decoherence process into optimal photon storage and retrieval strategies, we establish optimized switching protocols for experimentally relevant conditions, and evaluate the corresponding limits in the achievable fidelities. Based on these results we work out a simplified description that reproduces recent experiments ( 7 12480) and provides a new interpretation in terms of many-body decoherence involving multiple incident photons and multiple gate excitations forming the switch. Aside from offering insights into the operational capacity of realistic photon switching capabilities, our work provides a complete description of spin wave decoherence in a Rydberg quantum optics setting, and has immediate relevance to a number of further applications employing photon storage in Rydberg media.
我们开发了一个理论框架,用于描述基于里德堡原子诱导非线性的全光开关中多光子散射引起的退相干动力学。通过将这种退相干过程的知识纳入最优光子存储和检索策略,我们为实验相关条件建立了优化的开关协议,并评估了可实现保真度的相应限制。基于这些结果,我们得出了一个简化描述,该描述再现了最近的实验(7 12480),并从涉及多个入射光子和形成开关的多个门激发的多体退相干角度提供了新的解释。除了深入了解实际光子开关能力的运行容量外,我们的工作还提供了里德堡量子光学环境中自旋波退相干的完整描述,并且与许多在里德堡介质中采用光子存储的进一步应用直接相关。