Department of Chemistry, Boston University, Boston, MA 02215, USA.
Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
Sci Adv. 2019 May 10;5(5):eaav0561. doi: 10.1126/sciadv.aav0561. eCollection 2019 May.
As a stable and accurate biomarker, glycated hemoglobin (HbA1c) is clinically used to diagnose diabetes with a threshold of 6.5% among total hemoglobin (Hb). Current methods such as boronate affinity chromatography involve complex processing of large-volume blood samples. Moreover, these methods cannot measure HbA1c fraction at single-red blood cell (RBC) level, thus unable to separate the contribution from other factors such as RBC lifetime. Here, we demonstrate a spectroscopic transient absorption imaging approach that is able to differentiate HbA1c from Hb on the basis of their distinct excited-state dynamics. HbA1c fraction inside a single RBC is derived quantitatively through phasor analysis. HbA1c fraction distribution of diabetic blood is apparently different from that of healthy blood. A mathematical model is developed to derive the long-term blood glucose concentration. Our technology provides a unique way to study heme modification and to derive clinically important information void of bloodstream glucose fluctuation.
糖化血红蛋白 (HbA1c) 作为一种稳定且准确的生物标志物,其在临床上常被用于通过总血红蛋白 (Hb) 中 6.5%的阈值来诊断糖尿病。目前的方法,如硼酸亲和层析,涉及对大量血液样本进行复杂处理。此外,这些方法无法在单个红细胞 (RBC) 水平上测量 HbA1c 分数,因此无法将其与 RBC 寿命等其他因素的贡献区分开来。在这里,我们展示了一种基于其不同激发态动力学的光谱瞬态吸收成像方法,能够将 HbA1c 从 Hb 中区分出来。通过相分析定量得出单个 RBC 内的 HbA1c 分数。糖尿病血液的 HbA1c 分数分布明显不同于健康血液。我们建立了一个数学模型来推导长期血糖浓度。我们的技术为研究血红素修饰和推导临床上重要的、不依赖于血流葡萄糖波动的信息提供了一种独特的方法。