Department of Biomedical Engineeriˆng.
Photonics Center, and.
JCI Insight. 2022 May 23;7(10):e153079. doi: 10.1172/jci.insight.153079.
Bacteria have evolved to cope with the detrimental effects of ROS using their essential molecular components. Catalase, a heme-containing tetramer protein expressed universally in most aerobic bacteria, plays an indispensable role in scavenging excess hydrogen peroxide (H2O2). Here, through use of wild-type and catalase-deficient mutants, we identified catalase as an endogenous therapeutic target of 400-420 nm blue light. Catalase residing inside bacteria could be effectively inactivated by blue light, subsequently rendering the pathogens extremely vulnerable to H2O2 and H2O2-producing agents. As a result, photoinactivation of catalase and H2O2 synergistically eliminated a wide range of catalase-positive planktonic bacteria and P. aeruginosa inside biofilms. In addition, photoinactivation of catalase was shown to facilitate macrophage defense against intracellular pathogens. The antimicrobial efficacy of catalase photoinactivation was validated using a Pseudomonas aeruginosa-induced mouse abrasion model. Taken together, our findings offer a catalase-targeting phototherapy approach against multidrug-resistant bacterial infections.
细菌已经进化出利用其必需的分子成分来应对 ROS 的有害影响。过氧化氢酶是一种普遍存在于大多数需氧细菌中的含铁四聚体蛋白,在清除过量过氧化氢 (H2O2) 方面发挥着不可或缺的作用。在这里,我们通过使用野生型和过氧化氢酶缺陷突变体,确定过氧化氢酶是 400-420nm 蓝光的内源性治疗靶点。细菌内部的过氧化氢酶可以被蓝光有效灭活,从而使病原体对 H2O2 和产 H2O2 剂极其敏感。因此,过氧化氢酶的光灭活和 H2O2 的协同作用消除了广泛的过氧化氢酶阳性浮游细菌和生物膜内的铜绿假单胞菌。此外,过氧化氢酶的光灭活被证明有助于巨噬细胞抵抗细胞内病原体。我们使用铜绿假单胞菌诱导的小鼠擦伤模型验证了过氧化氢酶光灭活的抗菌功效。总之,我们的研究结果提供了一种针对多药耐药细菌感染的靶向过氧化氢酶的光疗方法。