Suppr超能文献

锰掺杂钛酸锂中掺杂位点的识别及其对电化学活性的影响。

Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate.

作者信息

Singh Harishchandra, Topsakal Mehmet, Attenkofer Klaus, Wolf Tamar, Leskes Michal, Duan Yandong, Wang Feng, Vinson John, Lu Deyu, Frenkel Anatoly I

机构信息

Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.

出版信息

Phys Rev Mater. 2018;2. doi: 10.1103/PhysRevMaterials.2.125403.

Abstract

Doped metal oxide materials are commonly used for applications in energy storage and conversion, such as batteries and solid oxide fuel cells. The knowledge of the electronic properties of dopants and their local environment is essential for understanding the effects of doping on the electrochemical properties. Using a combination of X-ray absorption near-edge structure spectroscopy (XANES) experiment and theoretical modeling we demonstrate that in the dilute (1 at. %) Mn-doped lithium titanate (LiTiO, or LTO) the dopant Mn ions reside on tetrahedral (8) sites. First-principles Mn K-edge XANES calculations revealed the spectral signature of the tetrahedrally coordinated Mn as a sharp peak in the middle of the absorption edge rise, caused by the 1 → 4 transition, and it is important to include the effective electron-core hole Coulomb interaction in order to calculate the intenisty of this peak accurately. This dopant location explains the impedance of Li migration through the LTO lattice during the charge-discharge process, and, as a result - the observed remarkable 20% decrease in electrochemical rate performance of the 1% Mn-doped LTO compared to the pristine LTO.

摘要

掺杂金属氧化物材料通常用于能量存储和转换应用,如电池和固体氧化物燃料电池。了解掺杂剂的电子性质及其局部环境对于理解掺杂对电化学性质的影响至关重要。通过结合X射线吸收近边结构光谱(XANES)实验和理论建模,我们证明在稀(1原子%)锰掺杂的钛酸锂(LiTiO,或LTO)中,掺杂的锰离子位于四面体(8)位点。第一性原理锰K边XANES计算揭示了四面体配位锰的光谱特征,表现为吸收边上升中部的一个尖锐峰,这是由1→4跃迁引起的,为了准确计算该峰的强度,考虑有效电子-核空穴库仑相互作用很重要。这种掺杂剂位置解释了充放电过程中锂通过LTO晶格迁移的阻抗,结果是,与原始LTO相比,1%锰掺杂的LTO的电化学速率性能显著下降了20%。

相似文献

2
Enhanced Electrochemical Performance of Rare-Earth Metal-Ion-Doped Nanocrystalline LiTiO Electrodes in High-Power Li-Ion Batteries.
ACS Appl Mater Interfaces. 2023 May 3;15(17):20925-20945. doi: 10.1021/acsami.3c00175. Epub 2023 Apr 17.
3
Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints.
J Am Chem Soc. 2017 Nov 22;139(46):16591-16603. doi: 10.1021/jacs.7b07628. Epub 2017 Nov 7.
4
Solution-Based, Anion-Doping of Li Ti O Nanoflowers for Lithium-Ion Battery Applications.
Chemistry. 2020 Jul 27;26(42):9389-9402. doi: 10.1002/chem.202002489. Epub 2020 Jul 8.
6
Excess lithium storage and charge compensation in nanoscale Li(4+x)Ti5O12.
Nanotechnology. 2013 Oct 25;24(42):424006. doi: 10.1088/0957-4484/24/42/424006. Epub 2013 Sep 25.
7
Ti Self-Doped Li Ti O Anchored on N-Doped Carbon Nanofiber Arrays for Ultrafast Lithium-Ion Storage.
Small. 2019 Dec;15(50):e1905296. doi: 10.1002/smll.201905296. Epub 2019 Nov 14.
9
Deciphering the structural and kinetic factors in lithium titanate for enhanced performance in Li/Na dual-cation electrolyte.
J Colloid Interface Sci. 2024 Dec 15;676:603-612. doi: 10.1016/j.jcis.2024.07.159. Epub 2024 Jul 21.
10
Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge.
Beilstein J Nanotechnol. 2022 Sep 15;13:975-985. doi: 10.3762/bjnano.13.85. eCollection 2022.

引用本文的文献

2
Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials.
J Phys Chem C Nanomater Interfaces. 2020 Apr 2;124(13):7082-7090. doi: 10.1021/acs.jpcc.0c00858. Epub 2020 Mar 6.

本文引用的文献

1
Nonresonant valence-to-core x-ray emission spectroscopy of niobium.
Phys Rev B. 2018;97. doi: 10.1103/PhysRevB.97.125139.
2
Bethe-Salpeter equation calculations of core excitation spectra.
Phys Rev B Condens Matter Mater Phys. 2011;83. doi: 10.1103/PhysRevB.83.115106.
3
AMnO (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalysts.
Top Catal. 2018;61(3):154-161. doi: 10.1007/s11244-018-0886-5. Epub 2018 Jan 16.
4
Endogenous Dynamic Nuclear Polarization for Natural Abundance O and Lithium NMR in the Bulk of Inorganic Solids.
J Am Chem Soc. 2019 Jan 9;141(1):451-462. doi: 10.1021/jacs.8b11015. Epub 2018 Dec 26.
5
Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells.
Adv Sci (Weinh). 2018 Mar 6;5(5):1700780. doi: 10.1002/advs.201700780. eCollection 2018 May.
6
Paramagnetic Metal-Ion Dopants as Polarization Agents for Dynamic Nuclear Polarization NMR Spectroscopy in Inorganic Solids.
Chemphyschem. 2018 Sep 5;19(17):2139-2142. doi: 10.1002/cphc.201800462. Epub 2018 Jun 12.
8
Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints.
J Am Chem Soc. 2017 Nov 22;139(46):16591-16603. doi: 10.1021/jacs.7b07628. Epub 2017 Nov 7.
9
Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals.
Angew Chem Int Ed Engl. 2017 Aug 21;56(35):10335-10340. doi: 10.1002/anie.201702673. Epub 2017 Jul 19.
10
Implications of Occupational Disorder on Ion Mobility in LiTiO Battery Materials.
Nano Lett. 2017 Jun 14;17(6):3884-3888. doi: 10.1021/acs.nanolett.7b01400. Epub 2017 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验