Harchol Adi, Reuveni Guy, Ri Vitalii, Thomas Brijith, Carmieli Raanan, Herber Rolfe H, Kim Chunjoong, Leskes Michal
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Materials Science and Engineering, Chungham National University, Daejeon 305-764, Republic of Korea.
J Phys Chem C Nanomater Interfaces. 2020 Apr 2;124(13):7082-7090. doi: 10.1021/acs.jpcc.0c00858. Epub 2020 Mar 6.
Rational design of materials for energy storage systems relies on our ability to probe these materials at various length scales. Solid-state NMR spectroscopy is a powerful approach for gaining chemical and structural insights at the atomic/molecular level, but its low detection sensitivity often limits applicability. This limitation can be overcome by transferring the high polarization of electron spins to the sample of interest in a process called dynamic nuclear polarization (DNP). Here, we employ for the first time metal ion-based DNP to probe pristine and cycled composite battery electrodes. A new and efficient DNP agent, Fe(III), is introduced, yielding lithium signal enhancement up to 180 when substituted in the anode material LiTiO. In addition for being DNP active, Fe(III) improves the anode performance. Reduction of Fe(III) to Fe(II) upon cycling can be monitored in the loss of DNP activity. We show that the dopant can be reactivated (return to Fe(III)) for DNP by increasing the cycling potential window. Furthermore, we demonstrate that the deleterious effect of carbon additives on the DNP process can be eliminated by using carbon free electrodes, doped with Fe(III) and Mn(II), which provide good electrochemical performance as well as sensitivity in DNP-NMR. We expect that the approach presented here will expand the applicability of DNP for studying materials for frontier challenges in materials chemistry associated with energy and sustainability.
储能系统材料的合理设计依赖于我们在各种长度尺度上探测这些材料的能力。固态核磁共振光谱是一种在原子/分子水平上获取化学和结构信息的强大方法,但其低检测灵敏度常常限制了其适用性。这种限制可以通过在一种称为动态核极化(DNP)的过程中将电子自旋的高极化转移到感兴趣的样品上来克服。在此,我们首次采用基于金属离子的DNP来探测原始的和循环后的复合电池电极。引入了一种新型高效的DNP试剂Fe(III),当它被掺入阳极材料LiTiO中时,锂信号增强可达180倍。此外,Fe(III)除了具有DNP活性外,还改善了阳极性能。循环过程中Fe(III)还原为Fe(II)可通过DNP活性的丧失来监测。我们表明,通过增加循环电位窗口,掺杂剂可以被重新激活(恢复为Fe(III))用于DNP。此外,我们证明了通过使用不含碳、掺杂有Fe(III)和Mn(II)的电极可以消除碳添加剂对DNP过程的有害影响,这些电极提供了良好的电化学性能以及DNP-NMR中的灵敏度。我们预计这里提出的方法将扩大DNP在研究与能源和可持续性相关的材料化学前沿挑战中的材料方面的适用性。