Suppr超能文献

相似文献

2
Avoidance of protein unfolding constrains protein stability in long-term evolution.
Biophys J. 2021 Jun 15;120(12):2413-2424. doi: 10.1016/j.bpj.2021.03.042. Epub 2021 Apr 29.
3
Highly Abundant Proteins Are Highly Thermostable.
Genome Biol Evol. 2023 Jul 3;15(7). doi: 10.1093/gbe/evad112.
6
Protein biophysics explains why highly abundant proteins evolve slowly.
Cell Rep. 2012 Aug 30;2(2):249-56. doi: 10.1016/j.celrep.2012.06.022. Epub 2012 Aug 2.
8
Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20461-6. doi: 10.1073/pnas.1209312109. Epub 2012 Nov 26.
10
Chaperone client proteins evolve slower than non-client proteins.
Funct Integr Genomics. 2020 Sep;20(5):621-631. doi: 10.1007/s10142-020-00740-1. Epub 2020 May 6.

引用本文的文献

1
Potts Hamiltonian Models and Molecular Dynamics Free Energy Simulations for Predicting the Impact of Mutations on Protein Kinase Stability.
J Phys Chem B. 2024 Feb 22;128(7):1656-1667. doi: 10.1021/acs.jpcb.3c08097. Epub 2024 Feb 13.
2
Highly Abundant Proteins Are Highly Thermostable.
Genome Biol Evol. 2023 Jul 3;15(7). doi: 10.1093/gbe/evad112.
5
A computational exploration of resilience and evolvability of protein-protein interaction networks.
Commun Biol. 2021 Dec 2;4(1):1352. doi: 10.1038/s42003-021-02867-8.
6
Abundance Imparts Evolutionary Constraints of Similar Magnitude on the Buried, Surface, and Disordered Regions of Proteins.
Front Mol Biosci. 2021 Apr 30;8:626729. doi: 10.3389/fmolb.2021.626729. eCollection 2021.
7
Avoidance of protein unfolding constrains protein stability in long-term evolution.
Biophys J. 2021 Jun 15;120(12):2413-2424. doi: 10.1016/j.bpj.2021.03.042. Epub 2021 Apr 29.
8
Study on the Influence of mRNA, the Genetic Language, on Protein Folding Rates.
Front Genet. 2021 Apr 6;12:635250. doi: 10.3389/fgene.2021.635250. eCollection 2021.

本文引用的文献

1
UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.
2
Thermal proteome profiling in bacteria: probing protein state .
Mol Syst Biol. 2018 Jul 6;14(7):e8242. doi: 10.15252/msb.20188242.
4
Pervasive Protein Thermal Stability Variation during the Cell Cycle.
Cell. 2018 May 31;173(6):1495-1507.e18. doi: 10.1016/j.cell.2018.03.053. Epub 2018 Apr 26.
5
Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.
Science. 2018 Mar 9;359(6380):1170-1177. doi: 10.1126/science.aan0346. Epub 2018 Feb 8.
7
Evidence of evolutionary selection for cotranslational folding.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11434-11439. doi: 10.1073/pnas.1705772114. Epub 2017 Oct 10.
8
Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast.
Cell Syst. 2017 May 24;4(5):495-504.e5. doi: 10.1016/j.cels.2017.03.003. Epub 2017 Mar 29.
9
Graph's Topology and Free Energy of a Spin Model on the Graph.
Phys Rev Lett. 2017 Feb 24;118(8):088302. doi: 10.1103/PhysRevLett.118.088302.
10
Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability.
Science. 2017 Feb 24;355(6327). doi: 10.1126/science.aai7825.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验