Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany.
Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, 13083-877, Brazil.
Anal Bioanal Chem. 2019 Jul;411(17):3763-3768. doi: 10.1007/s00216-019-01882-3. Epub 2019 May 15.
We describe a chip calorimetric technique that allows the investigation of biological material under anoxic conditions in a micro-scale and in real time. Due to the fast oxygen exchange through the sample flow channel wall, the oxygen concentration inside the samples could be switched between atmospheric oxygen partial pressure to an oxygen concentration of 0.5% within less than 2 h. Using this technique, anaerobic processes in the energy metabolism of Trypanosoma cruzi could be studied directly. The comparison of the calorimetric and respirometric response of T. cruzi cells to the treatment with the mitochondrial inhibitors oligomycin and antimycin A and the uncoupler FCCP revealed that the respiration-related heat rate is superimposed by strong anaerobic contributions. Calorimetric measurements under anoxic conditions and with glycolytic inhibitors showed that anaerobic metabolic processes contribute from 30 to 40% to the overall heat production rate. Similar basal and antimycin A heat rates with cells under anoxic conditions indicated that the glycolytic rates are independent of the oxygen concentration which confirms the absence of the "Pasteur effect" in Trypanosomes. Graphical abstract.
我们描述了一种芯片量热技术,该技术可在微尺度和实时条件下研究缺氧条件下的生物材料。由于通过样品流动通道壁的氧气快速交换,样品内部的氧气浓度可以在不到 2 小时的时间内从大气氧分压切换到 0.5%的氧气浓度。使用该技术,可以直接研究克氏锥虫能量代谢中的厌氧过程。将量热法和呼吸测量法对米氏抑制剂寡霉素和抗霉素 A 以及解偶联剂 FCCP 处理的克氏锥虫细胞的响应进行比较表明,与呼吸相关的热率被强烈的厌氧贡献所叠加。在缺氧条件下进行的量热测量以及使用糖酵解抑制剂的测量表明,厌氧代谢过程对总产热率的贡献为 30%至 40%。缺氧条件下细胞的基础热率和抗霉素 A 热率相似表明,糖酵解速率与氧浓度无关,这证实了锥虫中不存在“巴斯德效应”。