文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能(AI)与癌症预防:需要在 COMPASS 等人群实验室中探索 AI 在癌症控制规划中的潜在应用。

Artificial intelligence (AI) and cancer prevention: the potential application of AI in cancer control programming needs to be explored in population laboratories such as COMPASS.

机构信息

School of Public Health and Health Systems, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada.

Departments of Community Health Sciences & Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.

出版信息

Cancer Causes Control. 2019 Jul;30(7):671-675. doi: 10.1007/s10552-019-01182-2. Epub 2019 May 15.


DOI:10.1007/s10552-019-01182-2
PMID:31093860
Abstract

Understanding the risk factors that initiate cancer is essential for reducing the future cancer burden. Much of our current cancer control insight is from cohort studies and newer large-scale population laboratories designed to advance the science around precision oncology. Despite their promise for improving diagnosis and treatment outcomes, their current reductionist focus will likely have little impact shifting the cancer burden. However, it is possible that these big data assets can be adapted to have more impact on the future cancer burden through more focus on primary prevention efforts that incorporate artificial intelligence (AI) and machine learning (ML). ML automatically learns patterns and can devise complex models and algorithms that lend themselves to prediction in big data, revealing new unexpected relationships and pathways in a reliable and replicable fashion that otherwise would remain hidden given the complexities of big data. While AI has made big strides in several domains, the potential application in cancer prevention is lacking. As such, this commentary suggests that it may be time to consider the potential of AI within our existing cancer control population laboratories, and provides justification for why some small targeted investments to explore their impact on modelling existing real-time cancer prevention data may be a strategic cancer control opportunity.

摘要

了解引发癌症的风险因素对于降低未来的癌症负担至关重要。我们目前对癌症控制的许多见解来自队列研究和新的大规模人群实验室,旨在推进精准肿瘤学领域的科学研究。尽管这些研究有望改善诊断和治疗结果,但它们目前的简化重点可能对改变癌症负担影响甚微。然而,通过更多地关注将人工智能 (AI) 和机器学习 (ML) 纳入其中的初级预防措施,这些大数据资产有可能通过更集中的方式对未来的癌症负担产生更大的影响。ML 可以自动学习模式,并设计出复杂的模型和算法,从而可以在大数据中进行预测,以可靠和可复制的方式揭示新的意想不到的关系和途径,而大数据的复杂性则使这些关系和途径难以被发现。虽然人工智能在多个领域已经取得了重大进展,但在癌症预防方面的应用却有所欠缺。因此,本文评论建议,现在可能是时候考虑在现有的癌症控制人群实验室中应用人工智能的潜力了,并说明了为什么对探索其对现有实时癌症预防数据建模的影响进行一些小的有针对性的投资可能是一个具有战略意义的癌症控制机会。

相似文献

[1]
Artificial intelligence (AI) and cancer prevention: the potential application of AI in cancer control programming needs to be explored in population laboratories such as COMPASS.

Cancer Causes Control. 2019-5-15

[2]
Big Data, Machine Learning, and Artificial Intelligence to Advance Cancer Care: Opportunities and Challenges.

Semin Oncol Nurs. 2023-6

[3]
Integrating Artificial and Human Intelligence: A Partnership for Responsible Innovation in Biomedical Engineering and Medicine.

OMICS. 2020-5

[4]
Artificial Intelligence in Precision Cardiovascular Medicine.

J Am Coll Cardiol. 2017-5-30

[5]
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

J Am Coll Radiol. 2018-2-4

[6]
Artificial intelligence in the diagnosis of cardiovascular disease.

Rev Assoc Med Bras (1992). 2019-12

[7]
Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation.

Clin Biochem. 2019-7

[8]
Artificial intelligence (AI) and big data in cancer and precision oncology.

Comput Struct Biotechnol J. 2020-8-28

[9]
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.

Transfus Apher Sci. 2018-6

[10]
Artificial Intelligence and Big Data in Public Health.

Int J Environ Res Public Health. 2018-12-10

引用本文的文献

[1]
Utilization of Artificial Intelligence in Reducing the Incidence of Medication Error: A Bibliometric Analysis.

Health Sci Rep. 2025-7-31

[2]
A bibliometric analysis of the advance of artificial intelligence in medicine.

Front Med (Lausanne). 2025-2-21

[3]
Empowering cancer prevention with AI: unlocking new frontiers in prediction, diagnosis, and intervention.

Cancer Causes Control. 2025-4

[4]
Medical students' intention to integrate digital health into their medical practice: A pre-peri COVID-19 survey study in Canada.

Digit Health. 2022-7-21

[5]
Artificial Intelligence in Health Care: Bibliometric Analysis.

J Med Internet Res. 2020-7-29

[6]
Gut microbiome, big data and machine learning to promote precision medicine for cancer.

Nat Rev Gastroenterol Hepatol. 2020-7-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索