Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China.
Tianjin Institute of Environmental and Operational Medicine, No. 1 Dali Road, Heping District, Tianjin, 300050, China; Binzhou Medical College, Yantai 264000, China.
Ecotoxicol Environ Saf. 2019 Sep 30;180:259-268. doi: 10.1016/j.ecoenv.2019.03.058. Epub 2019 May 13.
Our study determined the toxic effects of zinc oxide (ZnO) particles with different diameters on dopaminergic (DA) neurons, the role of ubiquitin C-terminal hydrolase L1 (UCH-L1) for ZnO particles-induced neurotoxicity, and corresponding molecular mechanisms. We constructed an in vitro cell injury model for DA neurons to analyze the cytotoxicity of ZnO particles using SH-SY5Y cells. Following cell viability assays and flow cytometry, we found that the cytotoxicity of ZnO particles was affected by particle size, time, and dose of exposure. For example, the toxicity of ZnO particles with 50 nm or 100 nm diameter was stronger than that of ZnO particles with 1000 nm diameter. Furthermore, ZnO particles exposure resulted in a significant decrease in UCH-L1 expression in SH-SY5Y; whereas UCH-L1 overexpression led to a significant increase in cell viability and a sharp decrease in ROS level. Western blotting and adenovirus transfection found that exposure to ZnO particles with different diameters all activate the NF-κB signaling in SH-SY5Y cells; whereas UCH-L1 over-expression resulted in increased levels of IκBα, an endogenous inhibitor of NF-κB signaling pathway. ZnO particles with different diameters all induced cytotoxicity in DA neurons, which may be related to the free Zn in the suspension. Regarding the neurotoxic effect of ZnO particles, UCH-L1 protects against and/or alleviates neuronal damage, possibly by deubiquitination of the endogenous inhibitor, IκBα, which leads to activation of NF-κB signaling. Therefore, one possible mechanism for ZnO particle-induced neurotoxicity may be mediated via the down-regulation of UCH-L1 expression in DA cells.
我们的研究确定了不同直径的氧化锌 (ZnO) 颗粒对多巴胺能 (DA) 神经元的毒性作用、泛素 C 端水解酶 L1 (UCH-L1) 在 ZnO 颗粒诱导的神经毒性中的作用以及相应的分子机制。我们构建了体外 DA 神经元细胞损伤模型,使用 SH-SY5Y 细胞分析 ZnO 颗粒的细胞毒性。通过细胞活力测定和流式细胞术,我们发现 ZnO 颗粒的细胞毒性受颗粒尺寸、暴露时间和剂量的影响。例如,50nm 或 100nm 直径的 ZnO 颗粒的毒性强于 1000nm 直径的 ZnO 颗粒。此外,暴露于 ZnO 颗粒导致 SH-SY5Y 中 UCH-L1 表达显著降低;而 UCH-L1 过表达导致细胞活力显著增加和 ROS 水平急剧下降。Western blot 和腺病毒转染发现,不同直径的 ZnO 颗粒暴露均激活 SH-SY5Y 细胞中的 NF-κB 信号通路;而 UCH-L1 过表达导致内源性 NF-κB 信号通路抑制剂 IκBα的水平升高。不同直径的 ZnO 颗粒均诱导 DA 神经元细胞毒性,这可能与悬浮液中的游离 Zn 有关。关于 ZnO 颗粒的神经毒性作用,UCH-L1 可通过去泛素化内源性抑制剂 IκBα来保护和/或减轻神经元损伤,从而激活 NF-κB 信号通路。因此,ZnO 颗粒诱导的神经毒性的一种可能机制可能是通过下调 DA 细胞中的 UCH-L1 表达来介导的。