Lorenzo-Veiga Blanca, Sigurdsson Hakon Hrafn, Loftsson Thorsteinn, Alvarez-Lorenzo Carmen
Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Nanomaterials (Basel). 2019 May 15;9(5):745. doi: 10.3390/nano9050745.
Natamycin is the only drug approved for fungal keratitis treatment, but its low water solubility and low ocular penetration limit its efficacy. The purpose of this study was to overcome these limitations by encapsulating the drug in single or mixed micelles and poly(pseudo)rotaxanes. Soluplus and Pluronic P103 dispersions were prepared in 0.9% NaCl and pH 6.4 buffer, with or without α-cyclodextrin (αCD; 10% /), and characterized through particle size, zeta potential, solubilization efficiency, rheological properties, ocular tolerance, in vitro drug diffusion, and ex vivo permeation studies. Soluplus micelles (90-103 nm) and mixed micelles (150-110 nm) were larger than Pluronic P103 ones (16-20 nm), but all showed zeta potentials close to zero. Soluplus, Pluronic P103, and their mixed micelles increased natamycin solubility up to 6.00-fold, 3.27-fold, and 2.77-fold, respectively. Soluplus dispersions and poly(pseudo)rotaxanes exhibited in situ gelling capability, and they transformed into weak gels above 30 °C. All the formulations were non-irritant according to Hen's Egg Test on the Chorioallantoic Membrane (HET-CAM) assay. Poly(pseudo)rotaxanes facilitated drug accumulation into the cornea and sclera, but led to lower natamycin permeability through the sclera than the corresponding micelles. Poly(pseudo)rotaxanes made from mixed micelles showed intermediate natamycin diffusion coefficients and permeability values between those of Pluronic P103-based and Soluplus-based poly(pseudo)rotaxanes. Therefore, the preparation of mixed micelles may be a useful tool to regulate drug release and enhance ocular permeability.
那他霉素是唯一被批准用于治疗真菌性角膜炎的药物,但其低水溶性和低眼部渗透率限制了其疗效。本研究的目的是通过将药物封装在单胶束或混合胶束以及聚(伪)轮烷中来克服这些限制。在0.9%氯化钠和pH 6.4缓冲液中制备了含或不含α-环糊精(αCD;10% /)的Soluplus和泊洛沙姆P103分散体,并通过粒径、zeta电位、增溶效率、流变学性质、眼部耐受性、体外药物扩散和离体渗透研究对其进行了表征。Soluplus胶束(90 - 103 nm)和混合胶束(150 - 110 nm)比泊洛沙姆P103胶束(16 - 20 nm)更大,但所有胶束的zeta电位均接近零。Soluplus、泊洛沙姆P103及其混合胶束分别将那他霉素的溶解度提高了6.00倍、3.27倍和2.77倍。Soluplus分散体和聚(伪)轮烷表现出原位凝胶化能力,并且在30℃以上转变为弱凝胶。根据鸡胚绒毛尿囊膜试验(HET - CAM)测定,所有制剂均无刺激性。聚(伪)轮烷促进药物在角膜和巩膜中的蓄积,但导致那他霉素通过巩膜的渗透率低于相应的胶束。由混合胶束制成的聚(伪)轮烷的那他霉素扩散系数和渗透率值介于基于泊洛沙姆P103和基于Soluplus的聚(伪)轮烷之间。因此,混合胶束的制备可能是调节药物释放和提高眼部渗透率的有用工具。