Suppr超能文献

贝叶斯网络在包含微囊藻形态种的微囊藻毒素风险评估中的应用,以中国三个蓝藻水华暴发的湖泊为例。

Application of Bayesian network including Microcystis morphospecies for microcystin risk assessment in three cyanobacterial bloom-plagued lakes, China.

机构信息

Big Data Mining and Applications Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.

Big Data Mining and Applications Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.

出版信息

Harmful Algae. 2019 Mar;83:14-24. doi: 10.1016/j.hal.2019.01.005. Epub 2019 Jan 25.

Abstract

Microcystis spp., which occur as colonies of different sizes under natural conditions, have expanded in temperate and tropical freshwater ecosystems and caused seriously environmental and ecological problems. In the current study, a Bayesian network (BN) framework was developed to access the probability of microcystins (MCs) risk in large shallow eutrophic lakes in China, namely, Taihu Lake, Chaohu Lake, and Dianchi Lake. By means of a knowledge-supported way, physicochemical factors, Microcystis morphospecies, and MCs were integrated into different network structures. The sensitive analysis illustrated that Microcystis aeruginosa biomass was overall the best predictor of MCs risk, and its high biomass relied on the combined condition that water temperature exceeded 24 °C and total phosphorus was above 0.2 mg/L. Simulated scenarios suggested that the probability of hazardous MCs (≥1.0 μg/L) was higher under interactive effect of temperature increase and nutrients (nitrogen and phosphorus) imbalance than that of warming alone. Likewise, data-driven model development using a naïve Bayes classifier and equal frequency discretization resulted in a substantial technical performance (CCI = 0.83, K = 0.60), but the performance significantly decreased when model excluded species-specific biomasses from input variables (CCI = 0.76, K = 0.40). The BN framework provided a useful screening tool to evaluate cyanotoxin in three studied lakes in China, and it can also be used in other lakes suffering from cyanobacterial blooms dominated by Microcystis.

摘要

在自然条件下,微囊藻以不同大小的群体形式存在,已在温带和热带淡水生态系统中扩张,并造成了严重的环境和生态问题。在本研究中,开发了一个贝叶斯网络(BN)框架,以评估中国大型浅水富营养化湖泊(即太湖、巢湖和滇池)中微囊藻毒素(MCs)风险的概率。通过知识支持的方法,将理化因素、微囊藻形态物种和 MCs 整合到不同的网络结构中。敏感性分析表明,铜绿微囊藻生物量总体上是 MCs 风险的最佳预测因子,其高生物量依赖于水温超过 24°C 和总磷高于 0.2mg/L 的综合条件。模拟情景表明,在温度升高和营养物质(氮和磷)失衡的相互作用下,有害 MCs(≥1.0μg/L)的概率高于单独升温的情况。同样,使用朴素贝叶斯分类器和等频离散化进行数据驱动的模型开发,产生了显著的技术性能(CCI=0.83,K=0.60),但当模型从输入变量中排除特定物种的生物量时,性能显著下降(CCI=0.76,K=0.40)。BN 框架为评估中国三个研究湖泊中的蓝藻毒素提供了一个有用的筛选工具,也可用于其他受微囊藻为主的蓝藻水华影响的湖泊。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验