Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; ¶Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam 1066 CX, the Netherlands.
Mol Cell Proteomics. 2019 Aug;18(8):1479-1490. doi: 10.1074/mcp.RA119.001411. Epub 2019 May 16.
Fetuin, also known as α-2-HS-glycoprotein (gene name: AHSG), is one of the more abundant glycoproteins secreted into the bloodstream. There are two frequently occurring alleles of human AHSG, resulting in three genotypes (AHSG1, AHSG2, and heterozygous AHSG1/2). The backbone amino acid sequences of fetuin coded by the AHSG1 and AHSG2 genes differ in two amino acids including one known O-glycosylation site (aa position 256). Although fetuin levels have been extensively studied, the originating genotype is often ignored in such analysis. As fetuin has been suggested repeatedly as a potential biomarker for several disorders, the question whether the gene polymorphism affects the fetuin profile is of great interest. In this work, we describe detailed proteoform profiles of fetuin, isolated from serum of 10 healthy and 10 septic patient individuals and investigate potential glycoproteogenomics correlations, how gene polymorphisms affect glycosylation. We established an efficient method for fetuin purification from individuals' serum using ion-exchange chromatography. Subsequently, we performed hybrid mass spectrometric approaches integrating data from native mass spectra and peptide-centric MS analysis. Our data reveal a crucial effect of the gene polymorphism on the glycosylation pattern of fetuin. Moreover, we clearly observed increased fucosylation in the samples derived from the septic patients. Our serum proteoform analysis, targeted at one protein obtained from 20 individuals, exposes the wide variability in proteoform profiles, which should be taken into consideration when using fetuin as biomarker. Importantly, focusing on a single or few proteins, the quantitative proteoform profiles can provide, as shown here, already ample data to classify individuals by genotype and disease state.
胎球蛋白又被称为 α-2-HS-糖蛋白(基因名称:AHSG),是一种在血液中大量分泌的糖蛋白。人类 AHSG 有两个常见的等位基因,导致三种基因型(AHSG1、AHSG2 和杂合 AHSG1/2)。由 AHSG1 和 AHSG2 基因编码的胎球蛋白的骨干氨基酸序列在两个氨基酸位置上有所不同,包括一个已知的 O-糖基化位点(aa 位置 256)。尽管胎球蛋白的水平已经得到了广泛的研究,但在这种分析中,起始基因型往往被忽略。由于胎球蛋白被多次提出作为几种疾病的潜在生物标志物,因此基因多态性是否影响胎球蛋白谱是一个非常有趣的问题。在这项工作中,我们描述了从 10 名健康个体和 10 名脓毒症患者的血清中分离的胎球蛋白的详细蛋白质组特征,并研究了潜在的糖蛋白组学相关性,以及基因多态性如何影响糖基化。我们建立了一种从个体血清中高效纯化胎球蛋白的方法,使用离子交换色谱法。随后,我们采用了整合了天然质谱和肽质中心 MS 分析数据的混合质谱方法。我们的数据揭示了基因多态性对胎球蛋白糖基化模式的关键影响。此外,我们还清楚地观察到脓毒症患者样本中的岩藻糖基化增加。我们针对 20 个人的一个蛋白质进行的血清蛋白质组分析,揭示了蛋白质组特征的广泛可变性,在将胎球蛋白作为生物标志物使用时应考虑到这一点。重要的是,如这里所示,仅关注一个或几个蛋白质,定量蛋白质组特征就可以提供足够的数据来根据基因型和疾病状态对个体进行分类。