Suppr超能文献

用于自上而下蛋白质组学的高pH和低pH反相液相色谱二维分离

Two-Dimensional Separation Using High-pH and Low-pH Reversed Phase Liquid Chromatography for Top-down Proteomics.

作者信息

Wang Zhe, Ma Hongyan, Smith Kenneth, Wu Si

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019.

Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104.

出版信息

Int J Mass Spectrom. 2018 Apr;427:43-51. doi: 10.1016/j.ijms.2017.09.001. Epub 2017 Sep 9.

Abstract

Advancements in chromatographic separation are critical to in-depth top-down proteomics of complex intact protein samples. Reversed-phase liquid chromatography is the most prevalent technique for top-down proteomics. However, in cases of high complexities and large dynamic ranges, 1D-RPLC may not provide sufficient coverage of the proteome. To address these challenges, orthogonal separation techniques are often combined to improve the coverage and the dynamic range of detection. In this study, a "salt-free" high-pH RPLC was evaluated as an orthogonal dimension of separation to conventional low-pH RPLC with top-down MS. The RPLC separations with low-pH conditions (pH=2) and high-pH conditions (pH=10) were compared to confirm the good orthogonality between high-pH and low-pH RPLC's. The offline 2D RPLC-RPLC-MS/MS analyses of intact samples were evaluated for the improvement of intact protein identifications as well as intact proteoform characterizations. Compared to the 163 proteins and 328 proteoforms identified using a 1D RPLC-MS approach, 365 proteins and 886 proteoforms were identified using the 2D RPLC-RPLC top-down MS approach. Our results demonstrate that the 2D RPLC-RPLC top-down approach holds great potential for in-depth top-down proteomics studies by utilizing the high resolving power of RPLC separations and by using mass spectrometry compatible buffers for easy sample handling for online MS analysis.

摘要

色谱分离技术的进步对于复杂完整蛋白质样品的深入自上而下蛋白质组学至关重要。反相液相色谱是自上而下蛋白质组学中最常用的技术。然而,在高复杂性和大动态范围的情况下,一维反相液相色谱可能无法提供足够的蛋白质组覆盖范围。为了应对这些挑战,通常会结合正交分离技术来提高检测的覆盖范围和动态范围。在本研究中,评估了一种“无盐”高pH值反相液相色谱作为与传统低pH值反相液相色谱正交的分离维度,并用于自上而下的质谱分析。比较了低pH条件(pH = 2)和高pH条件(pH = 10)下的反相液相色谱分离,以确认高pH值和低pH值反相液相色谱之间具有良好的正交性。对完整样品进行离线二维反相液相色谱-反相液相色谱-串联质谱分析,以评估完整蛋白质鉴定和完整蛋白质异构体表征的改进情况。与使用一维反相液相色谱-质谱方法鉴定的163种蛋白质和328种蛋白质异构体相比,使用二维反相液相色谱-反相液相色谱自上而下质谱方法鉴定出了365种蛋白质和886种蛋白质异构体。我们的结果表明,二维反相液相色谱-反相液相色谱自上而下方法通过利用反相液相色谱分离的高分辨率以及使用与质谱兼容的缓冲液以便于在线质谱分析的样品处理,在深入的自上而下蛋白质组学研究中具有巨大潜力。

相似文献

1
Two-Dimensional Separation Using High-pH and Low-pH Reversed Phase Liquid Chromatography for Top-down Proteomics.
Int J Mass Spectrom. 2018 Apr;427:43-51. doi: 10.1016/j.ijms.2017.09.001. Epub 2017 Sep 9.
2
Development of an Online 2D Ultrahigh-Pressure Nano-LC System for High-pH and Low-pH Reversed Phase Separation in Top-Down Proteomics.
Anal Chem. 2020 Oct 6;92(19):12774-12777. doi: 10.1021/acs.analchem.0c03395. Epub 2020 Sep 1.
4
RPLC-RPLC-MS/MS for Proteoform Identification.
Methods Mol Biol. 2022;2500:31-42. doi: 10.1007/978-1-0716-2325-1_4.
5
Deep Intact Proteoform Characterization in Human Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography.
J Am Soc Mass Spectrom. 2019 Dec;30(12):2502-2513. doi: 10.1007/s13361-019-02315-2. Epub 2019 Nov 21.
6
High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics.
J Chromatogr A. 2017 May 19;1498:99-110. doi: 10.1016/j.chroma.2017.01.008. Epub 2017 Jan 5.
9
[Applications of high performance liquid chromatography-mass spectrometry in proteomics].
Se Pu. 2024 Jul;42(7):601-612. doi: 10.3724/SP.J.1123.2023.11006.
10
Capillary zone electrophoresis-mass spectrometry for top-down proteomics.
Trends Analyt Chem. 2019 Nov;120. doi: 10.1016/j.trac.2019.115644. Epub 2019 Aug 28.

引用本文的文献

2
Quantitative Top-down Proteomics Revealed Kinase Inhibitor-Induced Proteoform-Level Changes in Cancer Cells.
J Proteome Res. 2025 Jan 3;24(1):303-314. doi: 10.1021/acs.jproteome.4c00778. Epub 2024 Dec 2.
3
Influence of different sample preparation approaches on proteoform identification by top-down proteomics.
Nat Methods. 2024 Dec;21(12):2397-2407. doi: 10.1038/s41592-024-02481-6. Epub 2024 Oct 22.
4
Multidimensional Separations in Top-Down Proteomics.
Anal Sci Adv. 2023 Jul;4(5-6):181-203. doi: 10.1002/ansa.202300016. Epub 2023 May 29.
5
Optimization of Higher-Energy Collisional Dissociation Fragmentation Energy for Intact Protein-Level Tandem Mass Tag Labeling.
J Proteome Res. 2023 May 5;22(5):1406-1418. doi: 10.1021/acs.jproteome.2c00549. Epub 2023 Jan 5.
7
A benchmarking protocol for intact protein-level Tandem Mass Tag (TMT) labeling for quantitative top-down proteomics.
MethodsX. 2022 Oct 7;9:101873. doi: 10.1016/j.mex.2022.101873. eCollection 2022.
8
Optimization of protein-level tandem mass tag (TMT) labeling conditions in complex samples with top-down proteomics.
Anal Chim Acta. 2022 Aug 15;1221:340037. doi: 10.1016/j.aca.2022.340037. Epub 2022 Jun 7.
9
RPLC-RPLC-MS/MS for Proteoform Identification.
Methods Mol Biol. 2022;2500:31-42. doi: 10.1007/978-1-0716-2325-1_4.
10
An overview of technologies for MS-based proteomics-centric multi-omics.
Expert Rev Proteomics. 2022 Mar;19(3):165-181. doi: 10.1080/14789450.2022.2070476. Epub 2022 May 2.

本文引用的文献

1
Protein charge distribution in proteomes and its impact on translation.
PLoS Comput Biol. 2017 May 22;13(5):e1005549. doi: 10.1371/journal.pcbi.1005549. eCollection 2017 May.
2
High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics.
J Chromatogr A. 2017 May 19;1498:99-110. doi: 10.1016/j.chroma.2017.01.008. Epub 2017 Jan 5.
3
Identification and Characterization of Human Proteoforms by Top-Down LC-21 Tesla FT-ICR Mass Spectrometry.
J Proteome Res. 2017 Feb 3;16(2):1087-1096. doi: 10.1021/acs.jproteome.6b00696. Epub 2016 Dec 12.
4
Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry.
Methods Mol Biol. 2017;1507:153-168. doi: 10.1007/978-1-4939-6518-2_12.
5
Now, More Than Ever, Proteomics Needs Better Chromatography.
Cell Syst. 2016 Oct 26;3(4):321-324. doi: 10.1016/j.cels.2016.10.007.
7
Data on endogenous chicken sperm peptides and small proteins obtained through Top-Down High Resolution Mass Spectrometry.
Data Brief. 2016 Aug 16;8:1421-5. doi: 10.1016/j.dib.2016.07.050. eCollection 2016 Sep.
8
Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics.
Curr Opin Biotechnol. 2017 Feb;43:1-7. doi: 10.1016/j.copbio.2016.07.002. Epub 2016 Jul 22.
9
CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis.
J Vis Exp. 2016 Feb 29(108):53597. doi: 10.3791/53597.
10
Online Hydrophobic Interaction Chromatography-Mass Spectrometry for Top-Down Proteomics.
Anal Chem. 2016 Feb 2;88(3):1885-91. doi: 10.1021/acs.analchem.5b04285. Epub 2016 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验