Suppr超能文献

联苯桥连有机硅作为介孔碳氧化硅的前驱体及其在锂和钠离子电池中的应用。

Biphenyl-Bridged Organosilica as a Precursor for Mesoporous Silicon Oxycarbide and Its Application in Lithium and Sodium Ion Batteries.

作者信息

Weinberger Manuel, Su Po-Hua, Peterlik Herwig, Lindén Mika, Wohlfahrt-Mehrens Margret

机构信息

Helmholtz Institute Ulm (HIU), Karlsruher Insitute of Technology, Helmholtzstraße 11, D-89081 Ulm, Germany.

Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.

出版信息

Nanomaterials (Basel). 2019 May 16;9(5):754. doi: 10.3390/nano9050754.

Abstract

Silicon oxycarbides (SiOC) are an interesting alternative to state-of-the-art lithium battery anode materials, such as graphite, due to potentially higher capacities and rate capabilities. Recently, it was also shown that this class of materials shows great prospects towards sodium ion batteries. Yet, bulk SiOCs are still severely restricted with regard to their electrochemical performance. In the course of this work, a novel and facile strategy towards the synthesis of mesoporous and carbon-rich SiOC will be presented. To achieve this goal, 4,4'-bis(triethoxysilyl)-1,1'-biphenyl was sol-gel processed in the presence of the triblock copolymer Pluronic P123. After the removal of the surfactant using Soxhlet extraction the organosilica material was subsequently carbonized under an inert gas atmosphere at 1000 °C. The resulting black powder was able to maintain all structural features and the porosity of the initial organosilica precursor making it an interesting candidate as an anode material for both sodium and lithium ion batteries. To get a detailed insight into the electrochemical properties of the novel material in the respective battery systems, electrodes from the nanostructured SiOC were studied in half-cells with galvanostatic charge/discharge measurements. It will be shown that nanostructuring of SiOC is a viable strategy in order to outperform commercially applied competitors.

摘要

由于具有潜在的更高容量和倍率性能,碳氧化硅(SiOC)是一种有吸引力的替代材料,可用于替代诸如石墨等最先进的锂电池负极材料。最近,还表明这类材料在钠离子电池方面展现出巨大前景。然而,块状SiOC的电化学性能仍然受到严重限制。在这项工作中,将提出一种新颖且简便的合成介孔且富碳SiOC的策略。为实现这一目标,在三嵌段共聚物普朗尼克P123存在的情况下,对4,4'-双(三乙氧基硅基)-1,1'-联苯进行溶胶-凝胶处理。使用索氏提取法去除表面活性剂后,随后将有机硅材料在惰性气体气氛下于1000℃碳化。所得黑色粉末能够保持初始有机硅前驱体的所有结构特征和孔隙率,使其成为钠离子和锂离子电池负极材料的一个有趣候选物。为了详细了解这种新型材料在相应电池系统中的电化学性能,通过恒电流充放电测量研究了来自纳米结构SiOC的电极在半电池中的情况。结果将表明,SiOC的纳米结构化是一种可行的策略,以便超越商业应用的竞争对手。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c49/6566949/bdb613721165/nanomaterials-09-00754-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验