Suppr超能文献

声影检测:B 模式和射频数据的研究与统计。

Acoustic Shadow Detection: Study and Statistics of B-Mode and Radiofrequency Data.

机构信息

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada.

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada.

出版信息

Ultrasound Med Biol. 2019 Aug;45(8):2248-2257. doi: 10.1016/j.ultrasmedbio.2019.04.001. Epub 2019 May 14.

Abstract

An acoustic shadow is an ultrasound artifact occurring at boundaries between significantly different tissue impedances, resulting in signal loss and a dark appearance. Shadow detection is important as shadows can identify anatomical features or obscure regions of interest. A study was performed to scan human participants (N = 37) specifically to explore the statistical characteristics of various shadows from different anatomy and with different transducers. Differences in shadow statistics were observed and used for shadow detection algorithms with a fitted Nakagami distribution on radiofrequency (RF) speckle or cumulative entropy on brightness-mode (B-mode) data. The fitted Nakagami parameter and entropy values in shadows were consistent across different transducers and anatomy. Both algorithms utilized adaptive thresholding, needing only the transducer pulse length as an input parameter for easy utilization by different operators or equipment. Mean Dice coefficients (± standard deviation) of 0.90 ± 0.07 and 0.87 ± 0.08 were obtained for the RF and B-mode algorithms, which is within the range of manual annotators. The high accuracy in different imaging scenarios indicates that the shadows can be detected with high versatility and without expert configuration. The understanding of shadow statistics can be used for more specialized techniques to be developed for specific applications in the future, including pre-processing for machine learning and automatic interpretation.

摘要

声影是一种在显著不同的组织阻抗边界处发生的超声伪影,导致信号丢失和外观变暗。阴影检测很重要,因为阴影可以识别解剖特征或掩盖感兴趣的区域。进行了一项研究,专门对人体参与者(N=37)进行扫描,以探索来自不同解剖结构和不同换能器的各种阴影的统计特征。观察到阴影统计数据的差异,并使用在射频 (RF) 斑点上拟合的 Nakagami 分布或在亮度模式 (B 模式) 数据上累积熵的阴影检测算法。在不同的换能器和解剖结构中,拟合的 Nakagami 参数和阴影中的熵值是一致的。两种算法都利用自适应阈值,只需要换能器脉冲长度作为输入参数,便于不同操作人员或设备使用。RF 和 B 模式算法的平均骰子系数(±标准偏差)分别为 0.90±0.07 和 0.87±0.08,在手动注释者的范围内。在不同的成像场景中具有高精度表明,可以以高通用性和无需专家配置来检测阴影。对阴影统计数据的理解可用于未来特定应用中开发更专业的技术,包括机器学习的预处理和自动解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验