Suppr超能文献

产生散斑统计的伯尔分布的广义公式。

Generalized formulations producing a Burr distribution of speckle statistics.

作者信息

Parker Kevin J, Poul Sedigheh S

机构信息

University of Rochester, Hajim School of Engineering and Applied Sciences, Department of Electrical and Computer Engineering, Rochester, New York, United States.

University of Rochester, Hajim School of Engineering and Applied Sciences, Department of Mechanical Engineering, Rochester, New York, United States.

出版信息

J Med Imaging (Bellingham). 2022 Mar;9(2):023501. doi: 10.1117/1.JMI.9.2.023501. Epub 2022 Apr 1.

Abstract

The study of speckle from imaging systems has a rich history, and recently it was proposed that a fractal or power law distribution of scatterers in vascularized tissue will lead to a form of the Burr probability distribution functions for speckle amplitudes. This hypothesis is generalized and tested in theory, simulations, and experiments. We argue that two broadly applicable conjectures are sufficient to justify the applicability of the Burr distribution for speckle from a number of acoustical, optical, and other pulse-echo systems. The first requirement is a multiscale power law distribution of weak scatterers, and the second is a linear approximation for the increase in echo intensity with size over some range of applicability. The Burr distribution for speckle emerges under a wide variety of conditions and system parameters, and from this one can estimate the governing power law parameter, commonly in the range of 2 to 6. However, system effects including the imaging point spread function and the degree of focusing will influence the Burr parameters. A generalized pair of conditions is sufficient for producing Burr distributions across a number of imaging systems. Simulations and some theoretical considerations indicate that the estimated Burr power law parameter will increase with increasing density of scatters. For studies of speckle from living tissue or multiscale natural structures, the Burr distribution should be considered as a long tail alternative to classical distributions.

摘要

成像系统中散斑的研究有着丰富的历史,最近有人提出,血管化组织中散射体的分形或幂律分布将导致散斑幅度的一种 Burr 概率分布函数形式。这一假设在理论、模拟和实验中得到了推广和检验。我们认为,两个广泛适用的猜想足以证明 Burr 分布适用于许多声学、光学和其他脉冲回波系统的散斑。第一个要求是弱散射体的多尺度幂律分布,第二个要求是在一定适用范围内回波强度随尺寸增加的线性近似。散斑的 Burr 分布在各种条件和系统参数下都会出现,据此可以估计控制幂律参数,通常在 2 到 6 的范围内。然而,包括成像点扩散函数和聚焦程度在内的系统效应会影响 Burr 参数。一对广义条件足以在多个成像系统中产生 Burr 分布。模拟和一些理论考虑表明,估计的 Burr 幂律参数将随着散射体密度的增加而增加。对于活体组织或多尺度自然结构的散斑研究,Burr 分布应被视为经典分布的一种长尾替代。

相似文献

1
Generalized formulations producing a Burr distribution of speckle statistics.产生散斑统计的伯尔分布的广义公式。
J Med Imaging (Bellingham). 2022 Mar;9(2):023501. doi: 10.1117/1.JMI.9.2.023501. Epub 2022 Apr 1.
2
Speckle from branching vasculature: dependence on number density.分支血管的散斑:对数量密度的依赖性。
J Med Imaging (Bellingham). 2020 Mar;7(2):027001. doi: 10.1117/1.JMI.7.2.027001. Epub 2020 Apr 11.
4
Speckle statistics of biological tissues in optical coherence tomography.光学相干断层扫描中生物组织的散斑统计
Biomed Opt Express. 2021 Jun 17;12(7):4179-4191. doi: 10.1364/BOE.422765. eCollection 2021 Jul 1.
5
Burr, Lomax, Pareto, and Logistic Distributions from Ultrasound Speckle.Burr、Lomax、Pareto 和 Logistic 分布源自超声散斑。
Ultrason Imaging. 2020 Jul-Sep;42(4-5):203-212. doi: 10.1177/0161734620930621. Epub 2020 Jun 2.
6
Local Burr distribution estimator for speckle statistics.用于散斑统计的局部布氏分布估计器。
Biomed Opt Express. 2022 Mar 22;13(4):2334-2345. doi: 10.1364/BOE.451307. eCollection 2022 Apr 1.
8
Shapes and distributions of soft tissue scatterers.软组织散射体的形状和分布。
Phys Med Biol. 2019 Sep 5;64(17):175022. doi: 10.1088/1361-6560/ab2485.

本文引用的文献

2
Speckle statistics of biological tissues in optical coherence tomography.光学相干断层扫描中生物组织的散斑统计
Biomed Opt Express. 2021 Jun 17;12(7):4179-4191. doi: 10.1364/BOE.422765. eCollection 2021 Jul 1.
6
Burr, Lomax, Pareto, and Logistic Distributions from Ultrasound Speckle.Burr、Lomax、Pareto 和 Logistic 分布源自超声散斑。
Ultrason Imaging. 2020 Jul-Sep;42(4-5):203-212. doi: 10.1177/0161734620930621. Epub 2020 Jun 2.
7
Speckle from branching vasculature: dependence on number density.分支血管的散斑:对数量密度的依赖性。
J Med Imaging (Bellingham). 2020 Mar;7(2):027001. doi: 10.1117/1.JMI.7.2.027001. Epub 2020 Apr 11.
10
The 3D Spatial Autocorrelation of the Branching Fractal Vasculature.分支分形脉管系统的三维空间自相关
Acoustics (Basel). 2019 Jun;1(2):369-382. doi: 10.3390/acoustics1020020. Epub 2019 Apr 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验