Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland.
Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland.
Curr Opin Struct Biol. 2019 Apr;55:138-146. doi: 10.1016/j.sbi.2019.03.014. Epub 2019 May 16.
All types of cellular RNAs are post-transcriptionally modified, constituting the so called 'epitranscriptome'. In particular, tRNAs and their anticodon stem loops represent major modification hotspots. The attachment of small chemical groups at the heart of the ribosomal decoding machinery can directly affect translational rates, reading frame maintenance, co-translational folding dynamics and overall proteome stability. The variety of tRNA modification patterns is driven by the activity of specialized tRNA modifiers and large modification complexes. Notably, the absence or dysfunction of these cellular machines is correlated with several human pathophysiologies. In this review, we aim to highlight the most recent scientific progress and summarize currently available structural information of the most prominent eukaryotic tRNA modifiers.
所有类型的细胞 RNA 都经过转录后修饰,构成所谓的“转录后组”。特别是 tRNA 及其反密码子茎环代表主要的修饰热点。在核糖体解码机制的核心附着小的化学基团可以直接影响翻译速率、阅读框维持、共翻译折叠动力学和整体蛋白质组稳定性。tRNA 修饰模式的多样性是由专门的 tRNA 修饰酶和大型修饰复合物的活性驱动的。值得注意的是,这些细胞机器的缺失或功能障碍与几种人类病理生理学有关。在这篇综述中,我们旨在强调最近的科学进展,并总结目前可用的最主要的真核 tRNA 修饰酶的结构信息。